HC.1 FE Weak Statement Algorithm Steps

The (heat conduction) problem statement

L(T)=00nQ + BCs

Approximate solution, with associated error ) M
T ()= ¥.(x)Q,

TX)=T"(x)+e"(x)

Minimize the error via Galerkin weak statement
GwWs " sz\PB(x)L (TY)dx=0, 1<B <N
Implement GWS" via FE discrete approximation

Q=0

TVN=T"X) = UTe(X), GWS" = GWS"
Solve matrix statement

GWS" = [Matrix]{Q} = {b} , hence evaluate error €"(x)



HC.2 An Example, Heat Conduction in a Slab

Example problem problem data
ﬁ(T):—;—X(ki—I]—S:O, on 0<x<lL
f, = To
z(T):-ki—I—fnzo, at x =0
T(L) =Ty atx =L T I > X

sL?

Analytical solution
T(X)=""
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Any approximate solution

N
TN (X) = Z‘Pa(x)Qa :QI‘PI(X)+Q2‘P2(X)+...+QN‘PN (X)
o=1

For this simple problem, TY" = T(x) for N = 3 via

sL? f L x X
Q1: 9Q2:—3Q3:Tb;\lj1: _(fj’q]z:l_(fJ,TS:l



HC.3 Approximation, Constraint on Error

N
- - N .
Any approximation To(x) = 2 ¥.()Q,

] N N
The error in T 1se , recall

T(x) = TNx) + eN(x)

No knowledge of e" exists, however £(T") = -£(e")

N
LaNy = - j{kdgx
X

The error measure £(T ") constrained via

wsh = j Dp (X) LT Yy dx = 0

for any function ®g(X)



HC.4 Galerkin Weak Statement, Minimum Error

The optimal test function is the trial function
D ()= Yp (%)

This produces the Galerkin weak statement

N
Ll
dx

d

dx

dx 0, for 1<B<N

GWS\ = j W (X)
o

Integrating by parts, substituting TN(x) and BC f,, yields

N d\.IJ N
GWs" =3 | b I gy Q.- LPﬁsdx—ki\PN
@ dx  dx Q dx

=0

Xx=0

—

x=L

for 1 < <N, and heat flux BC is directly embedded



HC.5 Trial Functions, Interpolation

To complete the integrals in the GWS"

= must specify the trial space W, (X), 1 < a <N

Lagrange piecewise interpolation provides insight
f(x) T(x)
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Interpolation error can be adjusted by adding knots

— nodes of the FE discretization of Q = Q" = U.Q,



HC.6 Discrete Approximation, Finite Element Basis

For N = 3 node FE mesh . . - —

TV(0 = 3 ¥, (0Q, .o
=¥ 0Q,+¥,Q, +¥.,0Q, J\ . N

X1 X2 X3 X
5 0 1 =
Global trial functions ¥, (x) * /\
¥, (x= node (a))=1 1X1 X2 X3 x
Y (X=node (B#a))=0 v ] /
X1 X2 X3 ’X

Local finite element basis {N}

_ XR - x
~ XR - XL
_ x—-XL
’ XR -XLJ, 0 L X

(c) finite element basis

1

(N}

on every (!) element Q.



HC.7 Finite Element Matrix Library

GWSN first term derivatives, subscripts = matrices

d¥ U . 17, i=1 diN
Py 4%, g0 = [ SNEINT o gy, , ang A0 121N
o dx dx 9 dx  dx dx 1/¢,,i=2 dx

The integral of matrix products on Q, is

I, dgz'} ’ d{de} ax{Q}, =k Olei{_ll}ll{_l’ 1} dx Q).

Ll e

For the constant source term

sdx =s | N1 dx _sle [1|
L;{N} ‘ L{nz}d 2 {}}

Boundary conditions require no integration




HC.8 Finite Element Data Evaluations

The FE discrete implementation process yields
GWS" = GWS" => {WS},

_ 1, -0,
-+ | . e, ||

1 2 |y | dx\ser

Sej 1s a Kronecker delta on/off switch

Every contribution to {WS}, involves a product
{WS}. = (data)e x [ FE matrix ]

for e = 1 {WS}fH : '11]{@ ooy -3l {}}k dT{-
|

f

0

1




HC.9 FE Weak Statement Assembly over Q"

GWS" is a matrix statement, i.e.,

Ql
GWS" =Y (WS}, =[Marix]{Q} — (b} = {0}, ‘&=
e Q3
[Matrix] and {b} involve a row summation process
M 1 2 3
[Matrlx]: Z[Matrix] Q Q Q
e=1 ® ® °
i 7 r . = - Qe—l Qe:2
1 -1 0 0 0 0 1 -1 0
=%—1 1 O+%O 1 —1:%—1 2 -1
0 00 |0 -1 1 |0 -1 1

assembly is universally valid for 1-D, 2-D and 3-D problems (!)



HC.10 Matrix Statement Solution, BCs

Assembling GWSHh over M = 2 FE domains Q¢ yields

1 -1 0](Q1 > 1
1 2 —1l{g2l=2 2
{ 0 -1 1] QS} Bk %1
Substitute BC Q3 = Tbh, move unknown flux F3 to left
I -1 0 Q1 , 1 fnL/Zk
-1 2 oldlg2t=S3tll ] 1
0 -1 L/2k F3 8k 1 -T,

As QM equations are decoupled from F3, Cramer's rule

L sL 2
{Ql} {1 1} alG 0| e ke,
Q2 1 2 sL LT, 3sL° fnL+Tb

4 k 8Kk 2k

f
0
- F3

L

2 k

then solve for F3 = sL + f,



HC.11 Solution Accuracy, Error Distribution

GWSh FE solution DOF {Q} agrees with analytical solution

e this problem statement is very elementary

e concept of piecewise-continuous FE basis {N} verified
Th is still only an approximation!

e Taylor series error estimate: e"~O(¢?)

e"(x)

Q3

\ 4

(a) Positive source term S (b) Negative source term S




HC.12 Boundary Heat Flux Computation

Boundary heat flux computed via

differentiating TN(x) at x= L

GWSh matrix solution for F3

0 L2 L

Differentiating Th at x = L yields

2 fL
k9T S S | S
X | o _ 5 L/2| P | 8 2k P

(a) Positive sourceterms

= inexact (same as FD result)

Solving for F3 from GWSh matrix statement

dT M
dx

_k

L/2

F3 = —k

. = sL+fn

f L 2 2
T _{TbJr o, 3SL }_SL

2k 8k 8k

X=1L

= exact!



