IM.1 Introductory Material, PDE + BCs + IC

Laplacian dominates engineering PDE descriptions
due to "physics model” of continuum mechanics

yields EBV problem statements, hence BCs, IC

Example: unsteady heat conduction with source

0

ot

steady, 1D form (ODE) d°T + S =0+ BCs
dx 2 K

Determine analytical solutions for:

BCS: T(X L): T|_, T(X R,): TR

s/k=C, Y Cx' and Y cnsm(r”l”}

[ n

SOuUrces:

domain: | =xgz- X,



IM.2 Steady 1-D Conduction, Solutions

Constant source, integrate ODE twice

T, T
T(X):;—Cx2+ax+b '\
constants of integration are a and b T+

determine via BCs ! !

Polynomial series source, integrate directly

T(X) = — I > Cixit24+ax +b
(1+1)( 1+2)
translate origin, use BCs in X system | . i -— >
0 XL XR X

Fourier series source, use x system

trial space: T(x)=2 A sin (ml—ﬂx_)+ ax + b

m

substitute into ODE  =m.,n, Ay, C, + BCs (a,b)



IM.3 Unsteady 1-D Conduction Solution

Conclusion: 1-D linear laplacian ODE is easy to solve

Greater than 1-D employs separation of variables

find trial space

determine expansion coefficients using BCs and IC

Unsteady 1-D heat conduction, s =0

2
K 0t  ox?
BCs: Tx=0,)=0=T(x=11)
IC: T t=0)=f(x)

Trial space form via separation of variables (SOV)

T(x,t) =2 ¥.(x,1)Q, =F(x)G(t)

PDE becomes: 1 dG_1d°F _, B’



IM.4 Unsteady 1-D Conduction Solution

Separation of variables: PDE =2ODEs
functional independence requires the constant

ODEs now have source term functional dependence!
d°F

T BF=0
d X

ODE(X):

ODE(t): S5~ *BAC
Must choose sign for p* to maintain solution boundedness

solutions: F(x) =A sin (BX)+ B cos (BX)

G(t) =C exp (-Kﬁzt)



IM.5 Separation of Variables, BCs

Combining F and G produces trial space members
¥ ,(X, 1)Q, = [A, sin [Bx |+ B, cos (Bx || exp -xBt)

Contains 3 arbitrary coefficients:A,, B and B’
A, sin(0]+ B, cos(0)=0
Aasin(B|)+ Bacos(B|)=O

BCs:
non-trivial solution:
B,=0and B=B,=n=n/l, n=0,1,2, ...
Switching index label, solution trial space member is

‘I’n(x , t) = sin(nlLX exp (- KBﬁt)




IM.6 Separation of Variables, GWS

Trial space basis obtained via SOV process
series solution must satisfy IC, hence att = 0
IC: T(X,t=0)= f(X):Z::Qnsin(nILXjexp(O)
one equation for infinite number of unknowns Q,

Matrix solution via optimal Galerkin weak statement

j F(x)dx -3 sin(mlnxj Q. sin (”Iixjdx =0

for m=1,2,...,M, ...

GWS = [ sin[mlnx

Since sin(n, m) are orthogonal, matrix is diagonal

I
=2 | 4ip (DzX
:>Qn_|/031n( T )f(x)dx



IM.7 Theoretical Foundations, GWS

Analytical SOV solution examples, ODEs, PDEs

identify the trial space for the approximation,

form the expansion on Q,,
determine optimal coefficients by evaluating the GW'S
however, SOV infinite series PDE solution intractable !

Resolution, truncate series for an approximation
N
~ TN _ . [nmx e
T(x,t)=T (X,t)—%‘, Q, sm( I )exp( KBnt)

sin (n) belongs to a complete set
select N for verifiable accuracy

Analagously, GWS" discrete implementation via FE on Q"

asymptotic error estimate

mesh refinement < N increasing



IM.8 Steady 3-D Conduction SOV Solution

Steady conduction on 3-D cube domain

o0Q

2 2 2 b |V )
aT2+aT2+aT2:0 =
OX oy 0Z

BCs :T(0,y,z2)=0=T(a,y,z)

PDE :V°T =

T(x,0,z)=0=T(x,b,z)

T(x,y,0)=0,and T(x,y,c)= f(x,y)

Trial space determination
form for SOV: T(X,Y,2)=X(X) Y(Y) Z(2)

homogeneous BCs: ¥un (X)=sin (n%x) sin (m_me) sinh (ﬂBn,mZ)

GWS on coefficient matching f = diagonal matrix

approximation: TN (x)= Wom (X)Qum



IM.9 Summary, Analytical PDE Methods

Restrictions for analytic SOV “to work?”

PDE linear
BCs separable on 0Q
quasi-linear data

Attribute assimilations with weak statement

solution trial space

orthogonality

completeness

predictable accuracy enhancement

Finite element implementation of GWS handles
PDE non-linear systems

BCs on arbitrary 02
arbitrary data, first derivatives



IM.10 Legacy FD Connections To WS

Finite difference methodology

Taylor series for PDE operators
essentially a 1-D process

Example problem: 2
L(¢)=V*hp+5=0 oL

/(¢)=> ¢ = constant y

L.

For cartesian interior meshing with measures AXx, Ay

O(X+AX, Y) = d(X, y)+Ax% ts Lax? 20°¢ +O(AX’)

2
X,y

OX
X,y

za(l)‘ :(I)i+1,j _(I)i,j +O(AX)
8x\. : AX

)

8(1)
(’Bx




IM.11 FD Order-Of-Accuracy Control

Backwards TS yields O(Ax, Ay) constructions

2
00X A%, y) = 06, ) - ax Y a2 SRy
OX |y y OX* |, ,
L. TSk 5 + O (AX)
oX|; AX

Subtracting TSS:O(AXZ,AyZ) “molecules”

a‘b ¢i+1j' (I)i-lj 154 © ©
— = : —+ O (Ax 2 3 i i
A 7 Ax ( ) -1 | I+ 1

i

J>j+1
=

@ = (I)i’jﬂ i (I)i’j'l + O (Ay 2) Qj
oy 2 Ay

]




IM.12 FD Stencils, Laplacian

FD operators written as stencils

OX 2h

0 - 1 (101 |+ O(h?) 0 - 1 (1

~1 5o : ~1 T 50| 0
2k

] ayi,j

using h, k, to replace AX, Ay

Via same processes 2Nd derivative FD stencils

+ O(k ?)

0" ¢ 1 > 0’ ¢ 1 l
=1 (1. O(h = 1
e h2(121)+ (h*), o7 2 -21
1,) 1]

Hence, 2-D laplacian FD stencil (“symbol”) for h = k

+ O(h?)

1
2
\ hl_z[l -4 1
i 1

3-D laplacian FD symbol is the obvious extension



IM.13 FD Symbol < GWS Matrix Statement

FD symbol for laplacian PDE on uniform mesh

®;;+ S;;+TE=0

(V2 + s 3;—2{1 -411 1
FD 1

a‘“geometric” picture of matrix statement

Symbol correspondence to GWS statement

1
hl—z[l 4 1
1

D;; + Sij + TE = [Matrix]{®}-{b(s)} + {error} = {0}

GWS" generates matrix statement via FE assembly

FD stencil < FE [Matrix] connections will become exposed



IM.14 FD Approximate Solution

FD process yields a set of numbers @k, 1 < k < nnode

A
FD numbers <« approximate solution D
employs interpolation concepts oo
o o
- - o
Interpolation polynomial «
N 12k K

_ ) _ a
f()=a,+ax+ax>+.= > a X

a=0
N+1 coefficients a_ produce Nth-degree polynomial
Using nodal data, an FD "solution” could be

f(X)=Dy=ap+ aXe+ aX> + ... tayx for 1 <k<K

= [Matrix] statement for determining the a_
a (Dl
1 x; xZz2x? x) al _fq)z\

I X,
an \CDN]



IM.15 Polynomial FD “Solution”

Evaluating polynomial at K FD nodes xk produces

[ Matrix (x*)] { &} = { @y }

solvability requires K =N + 1

involves a-exponentiation on Xk

Solution of [Matrix] statement, e.g., via Cramer’s rule

FD solution: CD(FD:]C(X): > a, (Xk, CDk) X o
o=0,k-1
k=1,K

detraction 1s oscillations between nodes for K > 6
resolution is piecewise continuous Lagrange polynomials



IM.16 Lagrange Polynomial Interpolation

Functionally convenient interpolation polynomial

K ﬂ\q)k
Lagrange: f(x) = 2 L (X, Xy)D,

k=1 o ®

rather than: f(x)= X a, (xy, D) xe
a

I
1 2 k

Lagrange polynomial, for K data points

K

for the K-1 zeros of Bjk

Lc(X, Xk) = Cx (X — X1) (X = X32) ... (X = Xk1) (X = Xk41) ..

for djk at unity:

(X = Xk)

Cv=1/(Xk—X1) Xk — X2) ... (Xk— Xk1) Xk — Xks1) -+ (Xk — Xk)




IM.17 Lagrange Interpolation Polynominals

Lagrange polynomial of degree K-1

L (X, %) = (X =X1) (X —=X3) ... (X—=Xkq1) (X = Xgs1) ... (X = Xk)

(Xk — X1) (Xk = X2) ooo (Xk — Xiko1) Xk — Xks1) -vn (X — Xk)

polynomial interpolation for FD data ®k

M=

O(X)rp = Lk(X, Xi) P (FD)

k=1

provides a conceptual connection to GW S starting point

N
AN =D Y (0Q,

a=1

Piecewise continuity issues f®

depends on K
not unique for K > 1




IM.18 GWS Summary, FE Trial Space Basis

FE global solution approximation, udenotes “union”
qN=qgh=uU.q, (x)and g, (x)={N ()" {Ql
key is FE trial space basis {Nk(n)}

construction via Lagrange polynomials
extends directly to

k > 1

n>1

involves local (intrinsic) coordinate system n
coordinate transformations X = X(n)

Solving GWS determines expansion coefficient set

[Matrix] solution = {Q}=u,{Q}.



