FE.1 Engineering Simulation

Physical Laboratory:

- *model* the geometry similitude cost
- *measure* the data interpolation (errors) *interpretation*

Computational Laboratory:

- *model* the mathematics conservation, BCs
- *model* the physics complexity, cost
- compute the data approximation error physics model error interpretation

FE.2 A Problem Solving Environment

Mathematics / Physics

conservation principles physics closure models PDEs + BCs + ICs, discrete methods

FE.3 Problem Statements in Engineering

Unknown q(x) satisfies a PDE

$$L(q) = 0$$
, on $\Omega \subset \Re^n$

e.g., mass, momentum, energy principles

+ physics closure models

Connection to specifics involves BCs

$$_{\ell}(q) = 0$$
, on $\partial \Omega \subset \Re^{n-1}$

 $_{\ell}(q)$

Non-linearity, geometry preclude analytical solution

identify mathematically an approximation

$$q(\mathbf{x}) \approx q^{N}(\mathbf{x}) = \sum_{\alpha}^{N} \Psi_{\alpha}(\mathbf{x}) Q_{\alpha}$$

FE.4 FE Discrete Solution Process

Exact and approximate solutions differ by error

$$q(\mathbf{x}) = q^{N}(\mathbf{x}) + e^{N}(\mathbf{x})$$

Galerkin weak statement minimizes the error!

GWS
$$= \int_{\Omega} \Psi_{\beta}(\mathbf{x}) L(q^{N}) d\tau = 0$$
, for all trial functions Ψ_{β}

Discretize Ω into finite elements: $\Omega \Rightarrow \Omega^h = \cup \Omega_e$

notationally: $q^N \equiv q^h = \bigcup_e q_e(\mathbf{x})$ $GWS^N \equiv GWS^h \Rightarrow \{Q\}$ at nodes \Rightarrow mesh resolution requirement

FE.5 Summary, Finite Element Analysis

For arbitrary geometries and non-linearity

problem statement:

$$L(q) = 0$$
 on $\Omega \subset \Re^n + BCs$

approximation:

$$q(\mathbf{x}) \approx q^{N}(\mathbf{x}) \equiv \sum_{\alpha}^{N} \Psi_{\alpha}(\mathbf{x}) Q_{\alpha}$$

error minimization:

GWS^N =
$$\int_{\Omega_e} \Psi_{\alpha}(\mathbf{x}) L(q^N) d\tau \equiv 0$$

FE discretization:

$$\Omega \approx \Omega^h = \bigcup_e \Omega_e$$

$$q^{N} \equiv q^{h} = \bigcup_{e} \{N(\mathbf{x})\}^{T} \{Q\}_{e}$$

FE GWS h :

[Matrix]
$$\{Q\} = \{b\}$$

error quantization:

refined Ω^h solutions