HC.1 FE Weak Statement Algorithm Steps

The (heat conduction) problem statement

 $L(T) = 0 \text{ on } \Omega + BCs$

Approximate solution, with associated error

$$T^{N}(x) = \sum_{\alpha=1}^{N} \Psi_{\alpha}(x) Q_{\alpha}$$
$$T(x) = T^{N}(x) + e^{N}(x)$$

Minimize the error via Galerkin weak statement

GWS^{*N*} =
$$\int_{\Omega} \Psi_{\beta}(x) L(T^{N}) dx = 0, 1 \le \beta \le N$$

Implement GWS^N via FE discrete approximation $\Omega \Rightarrow \Omega^{h} \equiv \bigcup_{e} \Omega_{e}$ $T^{N} \equiv T^{h}(x) \Rightarrow \bigcup_{e} T_{e}(x), \text{ GWS}^{N} \Rightarrow \text{ GWS}^{h}$ **Solve matrix statement**

 $GWS^h \Rightarrow [Matrix] \{Q\} = \{b\}$, hence evaluate error $e^h(x)$

O

 $\partial \Omega$

 Ω_{ρ}

HC.2 An Example, Heat Conduction in a Slab

Example problem

$$\mathcal{L}(T) = -\frac{\mathrm{d}}{\mathrm{d}x} \left(k \, \frac{\mathrm{d}T}{\mathrm{d}x} \right) - s = 0, \qquad on \quad 0 < x < L$$

$$\ell(T) = -k \frac{\mathrm{d}T}{\mathrm{d}x} - f = 0 \qquad at \ x = 0$$

$$T(L) = T_b \qquad at \ x = L$$

problem data

Analytical solution

$$T(x) = \frac{sL^2}{2k} \left[1 - \left(\frac{x}{L}\right)^2 \right] + \frac{fL}{k} \left(1 - \frac{x}{L} \right) + T_b$$

Any approximate solution

$$T^{N}(x) = \sum_{\alpha=1}^{N} \Psi_{\alpha}(x)Q_{\alpha} = Q_{1}\Psi_{1}(x) + Q_{2}\Psi_{2}(x) + \dots + Q_{N}\Psi_{N}(x)$$

For this simple problem, $T^N \Rightarrow T(x)$ for N = 3 via

$$Q_1 = \frac{sL^2}{2k}, Q_2 = \frac{fL}{k}, Q_3 = T_b; \Psi_1 = 1 - \left(\frac{x}{L}\right)^2, \Psi_2 = 1 - \left(\frac{x}{L}\right), \Psi_3 = 1$$

HC.3 Approximation, Constraint on Error

$$T^{N}(x) = \sum_{\alpha=1}^{N} \Psi_{\alpha}(x) Q_{\alpha}$$

The *error* in T^N is e^N , recall

Any approximation

 $T(x) = T^{N}(x) + e^{N}(x)$

No knowledge of e^N exists, however $L(T^N) = -L(e^N)$

$$\mathsf{L}(T^N) = -\frac{\mathsf{d}}{\mathsf{d}x} \left(k \frac{\mathsf{d}T^N}{\mathsf{d}x} \right) - s \neq 0$$

Error minimized via Galerkin weak statement

$$GWS^{N} \equiv \int \Psi_{\beta}(x) \mathsf{L}(T^{N}) \, \mathrm{d}x \equiv 0, \, 1 \leq \beta \leq N$$

HC.4 Galerkin Weak Statement, Minimum Error

Approximation

$$T^{N}(x) \equiv \sum_{\alpha=1}^{N} \Psi_{\alpha}(x) Q_{\alpha}$$

Galerkin weak statement

$$GWS^{N} \equiv \int_{\Omega} \Psi_{\beta}(x) \left[-\frac{d}{dx} \left(k \frac{dT^{N}}{dx} \right) - s \right] dx \equiv 0, \quad for \quad 1 \le \beta \le N$$

Integrating by parts, substituting $T^N(x)$ and BC f_n

$$GWS^{N} = \sum_{\alpha=1}^{N} \left(\int_{\Omega} \frac{d\Psi_{\beta}}{dx} k \frac{d\Psi_{\alpha}}{dx} dx \right) Q_{\alpha} - \int_{\Omega} \Psi_{\beta} s dx - k \frac{dT^{N}}{dx} \Psi_{N} \bigg|_{x=L} - f_{n} \Psi_{1} \bigg|_{x=0} = 0$$

for $1 \le \beta \le N$, and heat flux BC is directly *embedded*

HC.5 Trial Functions, Interpolation

To complete the integrals in the \mathbf{GWS}^N

 \Rightarrow must specify the trial space $\Psi_{\alpha}(x)$, $1 \le \alpha \le N$

Lagrange piecewise interpolation provides insight

Interpolation error can be adjusted by adding knots "o"

 \Rightarrow nodes of the FE discretization of $\Omega \Rightarrow \Omega^h = \cup_e \Omega_e$

HC.6 Discrete Approximation, Finite Element Basis

For
$$N = 3$$
 node FE mesh

$$T^{N}(x) = \sum_{\alpha=1}^{N=3} \Psi_{\alpha}(x)Q_{\alpha}$$

$$= \Psi_{1}Q_{1} + \Psi_{2}Q_{2} + \Psi_{3}Q_{3}$$

$$\Psi_{1} \qquad 1$$

$$X$$
Iobal trial functions $\Psi_{\alpha}(x)$

$$\Psi_{2} \qquad 1$$

$$\Psi_{\alpha}(x \Rightarrow \text{node } (\alpha)) \equiv 1$$

$$\Psi_{\alpha}(x \Rightarrow \text{node } (\beta \neq \alpha)) \equiv 0$$

$$\Psi_{3} \qquad 1$$

$$W_{3} \qquad 1$$

Local finite element basis $\{N\}$

$$\{N\} = \begin{cases} n_1 = \frac{XR - x}{XR - XL} \\ n_2 = \frac{x - XL}{XR - XL} \end{cases}$$

on every (!) element Ω_e

G

(c) finite element basis

HC.7 Finite Element Matrix Library

GWS^N first term derivatives, subscripts \Rightarrow matrices

$$\int_{\Omega} \frac{\mathrm{d}\psi_{\beta}}{\mathrm{d}x} \frac{\mathrm{d}\psi_{\alpha}}{\mathrm{d}x} \mathrm{d}x \, Q_{\alpha} \Rightarrow \int_{\Omega_{e}} \frac{\mathrm{d}\{N\}}{\mathrm{d}x} \frac{\mathrm{d}\{N\}^{T}}{\mathrm{d}x} \mathrm{d}x \, \{Q\}_{e}, \quad and \quad \frac{\mathrm{d}n_{i}}{\mathrm{d}x} = \begin{cases} -1/\ell_{e}, i=1\\ 1/\ell_{e}, i=2 \end{cases} = \frac{\mathrm{d}\{N\}}{\mathrm{d}x}$$

The integral of matrix products on Ω_e is

$$\int_{\Omega_{e}} \frac{\mathrm{d}\{N\}}{\mathrm{d}x} k \frac{\mathrm{d}\{N\}^{T}}{\mathrm{d}x} \mathrm{d}x\{Q\}_{e} = k \int_{0}^{l_{e}} \frac{1}{l_{e}} \begin{cases} -1 \\ 1 \end{cases} \frac{1}{l_{e}} \{-1 \ 1\} \mathrm{d}x\{Q\}_{e}$$
$$= \frac{k}{l_{e}^{2}} \begin{bmatrix} 1 \ -1 \\ -1 \ 1 \end{bmatrix} \int_{0}^{l_{e}} \mathrm{d}x\{Q\}_{e} = \frac{k}{l_{e}} \begin{bmatrix} 1 \ -1 \\ -1 \ 1 \end{bmatrix} \{Q\}_{e}$$

For the constant source term

$$\int_{\Omega_e} \{N\} s \, \mathrm{d} x = s \quad \int_0^{l_e} \left\{ \begin{array}{c} n_1 \\ n_2 \end{array} \right\} \mathrm{d} x = \frac{s \, l_e}{2} \left\{ \begin{array}{c} 1 \\ 1 \end{array} \right\}$$

Boundary conditions require no integration

HC.8 Finite Element Data Evaluations

The FE discrete implementation process yields

$$GWS^{N} \Rightarrow GWS^{h} = \sum_{e} \{WS\}_{e}$$

$$\{WS\}_{e} = \frac{k}{l_{e}} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \{Q\}_{e} - \frac{s}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} -k \frac{dT}{dx} \begin{cases} -\delta_{e1} \\ \delta_{eM} \end{cases}$$

 δ_{ej} is a Kronecker delta on/off switch

Every contribution to {WS}_e involves a product

$$\{WS\}_{e} = (data)_{e} \times [FE \text{ matrix }]$$
for $e = 1$: $\{WS\}_{1} = \frac{k}{l_{1}} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \{Q_{e}\}_{e=1} - \frac{sl_{1}}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} - k \frac{dT}{dx} \begin{pmatrix} -\delta_{11} \\ 0 \end{pmatrix}$

$$= \frac{k}{L/2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{pmatrix} Q1 \\ Q2 \end{pmatrix} - \frac{sL/2}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} f \\ 0 \end{pmatrix}$$
for $e = 2$: $\{WS\}_{2} = \frac{k}{L/2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} Q2 \\ Q3 \end{bmatrix} - \frac{sL}{4} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ F3 \end{bmatrix}$

HC.9 FE Weak Statement Assembly over Ω^h

 $\{Q\} = \begin{cases} Q1\\Q2\\Q3 \end{cases}$

$$GWS^h$$
 is a matrix statement, i.e.,

GWS^h =
$$\sum_{e} \{WS\}_{e} = [Matrix] \{Q\} - \{b\} = \{0\},\$$

[Matrix] and {b} involve a row summation process

$$[Matrix] = \sum_{e=1}^{M} [Matrix]_{e}$$

$$Q1 \quad Q2 \quad Q3$$

$$= \frac{2k}{L} \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \frac{2k}{L} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix} = \frac{2k}{L} \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$

$$[b] = \sum_{e=1}^{2} \{b\}_{e} = \frac{sL}{4} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} f_{n} \\ 0 \\ 0 \end{bmatrix} + \frac{sL}{4} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -F3 \end{bmatrix}$$

assembly is universally valid for 1-D, 2-D and 3-D problems (!)

HC.10 Matrix Statement Solution, BCs

Assembling GWS^h over M = 2 FE domains Ω_e yields

$$\begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix} \begin{cases} Q \\ Q \\ Q \\ Q \end{cases} = \frac{sL^2}{8k} \begin{cases} 1 \\ 2 \\ 1 \end{cases} + \frac{L}{2k} \begin{cases} f \\ 0 \\ -F \end{cases}$$

Substitute BC Q3 = Tb, move unknown flux F3 to left

$$\begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & -1 & L/2k \end{bmatrix} \begin{bmatrix} Q1 \\ Q2 \\ F3 \end{bmatrix} = \frac{sL^2}{8k} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + \begin{bmatrix} fL/2k \\ T_b \\ -T_b \end{bmatrix}$$

As QM equations are *decoupled* from F3, Cramer's rule

$$\begin{cases} Q \\ Q \\ Q \\ 2 \end{cases} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}^{-1} \begin{cases} \frac{L}{2k} \left(\frac{sL}{4} + f_n \right) \\ \frac{sL^2}{4k} + T_b \end{cases} = \begin{cases} \frac{sL^2}{2k} + \frac{fL}{k} + T_b \\ \frac{3sL^2}{8k} + \frac{fL}{2k} + T_b \end{cases}$$

then solve for $F3 = sL + f$

HC.11 Solution Accuracy, Error Distribution

The FE GWS^h nodal array $\{Q\}$ agrees with analytical solution

- this problem statement is very elementary
- concept of piecewise-continuous FE basis $\{N\}$ verified

T^h is still only an approximation!

• Taylor series *error* estimate: $e^h \approx O(\ell_e^2)$

HC.12 Boundary Heat Flux Computation

Boundary heat fluxes can be computed via

differentiating $T^h(x)$ at x = L

GWSh matrix solution for F3

Differentiating T^h at x = L yields

(a) Positive source terms

$$-k\frac{dT_{e=2}}{dx} = -\frac{k}{L/2} \left[T_b - \left(\frac{3sL^2}{8k} + \frac{f_nL}{2k} + T_b\right) \right] = \frac{3sL}{4} + f_n$$

 \Rightarrow inexact (same as FD result)

Solving for F3 from GWS^h matrix statement

$$F3 = -k\frac{dT^{N}}{dx}\Big|_{x=L} = -\frac{k}{L/2}\left[T_{b} - \left(T_{b} + \frac{f_{n}L}{2k} + \frac{3sL^{2}}{8k}\right) - \frac{sL^{2}}{8k}\right] = sL + f_{n}$$

exact!

HC.13 Error Estimate, Quantization

Taylor series (TS) truncation error (TE) estimate

$$e^h \approx O(l_e^2) \equiv C\ell_e^2$$

Quantization of error uses uniform mesh refinement

meshes :
$$\Omega^{h}$$
, $\Omega^{h/2}$, $\Omega^{h/4}$,...
solutions : $T^{h} + e^{h} = T = T^{h/2} + e^{h/2} = ...$
clear C: $e^{h} = 2^{2} e^{h/2}$
hence : $T^{h/2} - T^{h} \equiv \Delta T^{h/2} = (2^{2} - 1) e^{h/2} \Longrightarrow e^{h/2} = \Delta T^{h/2}/3$

HC.14 Error Estimation, Energy Norm

Improved error estimate uses entire solution via a "norm"

energy norm =
$$||T||_{E}^{h} = \frac{1}{2} \int_{\Omega} k \frac{\mathrm{d}T^{h}}{\mathrm{d}x} \frac{\mathrm{d}T^{h}}{\mathrm{d}x} \mathrm{d}\tau \implies \frac{1}{2} \sum_{e}^{M} \{Q\}_{e}^{T} [\mathrm{DIFF}]_{e} \{Q\}_{e}$$

Uniform mesh refinement study

$$\|T^{h}\|_{E} + \|e^{h}\|_{E} = \|T\|_{E} = \|T^{h/2}\|_{E} + \|e^{h/2}\|_{E} = \dots$$
asymptotic convergence: $\|e^{h}\|_{E} \le C_{k}\ell_{e}^{2k}\|data\|_{L2}^{2}$
error estimator
$$\|e^{h/2}\|_{E} = \frac{\Delta \|T^{h/2}\|_{E}}{2^{2k} - 1}$$

$$\int_{3.0}^{1.0} \int_{3.0}^{1.0} \int_{3.0}^{1.0} \int_{3.0}^{1.0} \int_{3.0}^{1.0} \int_{3.0}^{1.0} \int_{3.0}^{1.0} \int_{3.0}^{1.0} \int_{3.0}^{1.0} \int_{1.0}^{1.0} \int_{3.0}^{1.0} \int_{1.0}^{1.0} \int_{1.0}^{1.0} \int_{1.2}^{1.0} \int_{1.0}^{1.0} \int_{0.8}^{1.0} \int_{0.5}^{1.0} \int_{0.3}^{1.0} \int_{0.0}^{1.0} \int_{0.0}^{1.0}$$

HC.15 Error Quantization, $\{N_1\}$ FE Solution

Results from the computer lab exercise

Mesh	М	le	$Q_1 \cdot 10^2$	$e^{h/2}(\text{est.})$	slope
Ω^{h}	1	1.00000	2.50000		
$\Omega^{h/2}$	2	0.50000	2.50000	0.000000	
$\Omega^{h/4}$	4	0.25000	2.50000	0.000000	
$\Omega^{h/8}$	8	0.12500	2.50000	0.000000	
$\Omega^{h/16}$	16	0.06250	2.50000	0.000000	
$\Omega^{h/32}$	32	0.03125	2.50000	0.000000	
$\Omega^{h/64}$	64	0.01563	2.50000	0.000000	

ax

e^{h}	
	E

Mesh	М	$l_{\rm e}$	$\left \left \left T^{h/2} \right \right _E 10^4$	$ e^{h/2} _{E}(est)$	slope
Ω^{h}	1	1.00000	1.12501		
$\Omega^{h/2}$	2	0.50000	1.15625	104.1667	
$\Omega^{h/4}$	4	0.25000	1.16406	26.04170	1.9999
$\Omega^{h/8}$	8	0.12500	1.16601	6.510417	2.0000
$\Omega^{h/16}$	16	0.06250	1.16650	1.627603	2.0000
$\Omega^{h/32}$	32	0.03125	1.16663	0.406902	1.9999
$\Omega^{h/64}$	64	0.01563	1.16663	0.101725	2.0000