ST*n***.1** Scalar Transport, GWS^{*h*} + θ **TS** *for all n*

Conservation principle:

$$\mathsf{L}(q) = \frac{\partial q}{\partial t} + \mathbf{u} \cdot \nabla q - \frac{1}{\operatorname{Pa}} \nabla \cdot (1 + \operatorname{Re}^{t}) \nabla q - s = 0$$

$$\ell(q) = \nabla q \cdot \hat{\mathbf{n}} + \operatorname{Pb}(q - q_{ref}) + f_{n} = 0$$

 $\mathbf{GWS}^{h} + \mathbf{\theta TS} \Rightarrow \mathbf{matrix statement:}$

$$[JAC] \{\Delta Q\} = -\Delta t \{RES\}_n, \{Q\}_{n+1} = \{Q\}_n + \{\Delta Q\}$$

$$[JAC], \{RES\} \Rightarrow S_e \{WS\}_e$$

$$[JAC]_e = [MASS]_e + \theta \Delta t ([UVWVEL]_e + [DIFF]_e + [HBC]_e)$$

$$\{RES\}_e = [UVWEL + DIFF + HBC]_e \{Q\}_e - \{b(s, q_{ref}, f_n)\}$$

Asymptotic error estimate:

$$q(\mathbf{x},t) = q^{h}(\mathbf{x},t) + e^{h}(\mathbf{x},t)$$

$$\left\|e^{h}(t)\right\|_{E} \leq Ch^{2\gamma} \left\|\text{data}\right\|_{L^{2}}^{2} + C_{t}\Delta t^{f(\theta)} \left\|q_{0}\right\|_{E}, \gamma = \min(1;k,r-1 \text{ for } Pa^{-1} > 0)$$

$$\text{norm:} \quad \left\|q^{h}(t)\right\|_{E} = \frac{1}{2} \int_{\Omega} Pa^{-1} \nabla q^{h} \cdot (1 + Re^{t}) \nabla q^{h} d\tau + \frac{1}{2} \int_{\partial \Omega} Pb(q^{h})^{2} d\sigma$$

$$= \frac{1}{2} \sum_{e} \left\{Q(n\Delta t)\right\}_{e}^{T} [\text{DIFF} + \text{HBC}]_{e} \left\{Q(n\Delta t)\right\}_{e}$$

ST*n***.2 GWS**^{*h*} + θ **TS** \Rightarrow **Newton template**, *for all n*

Newton statement components

 $[JAC]_{e} = [MASS]_{e} + \theta \Delta t ([UVWVEL]_{e} + [DIFF]_{e} + [HBC]_{e})$ $\Delta t \{RES\}_{e} = \Delta t (([UVWVEL]_{e} + [DIFF]_{e} + [HBC]_{e}) \{Q\}_{n} - \{b\}_{n+\theta})$

Template pseudo-code, for *any* { $N_k(\zeta, \eta)$ }, $1 \le K \le n$

 $\{WS\}_e \equiv (const)(avg)_e \{dist\}_e (metric)[Matrix] \{Q \text{ or } data\}_e$

 $[JAC]_{e} = (\)(\) \{ \\}(1)[M200][\] + (\theta \Delta t)(\) \{UK\}(0)[M300K]_{e}[\] + (\theta \Delta t, Pa^{-1})(\) \{1 + \text{Ret}\}(-1)[M30KK]_{e}[\] + (\theta \Delta t, Pb / Pa)(\) \{1 + \text{Ret}\}(1)[N3000][\]$

 $\Delta t \{\text{RES}\}_{e} = (\Delta t)() \{\mathbf{U}K\}(0)[\text{M}300 K]\{\text{QN}\}$

+ $(\Delta t, \operatorname{Pa}^{-1})()$ {1 + Ret } (-1)[M 30 KK]_e {QN }

+ $(\Delta t, Pb/Pa)()$ {1 + Ret }(1)[N3000]{QN}

+ $(-\Delta t)()()(1)[M200]{SRC} + (\Delta t)()()(1)[N200]{FN}$

+ $(-\Delta t, Pb/Pa)()$ {1 + Ret }(1)[N3000] {QR }

STn.3 Dispersion Error Mode Identification

From *n* = 1 Peclet & traveling wave experiments

for Pe modest, $GWS^h + \theta TS$ solutions "OK" for Ω^h good enough for Pe large, dominant error mode is mesh scale oscillations

Taylor series enables decisive error characterization

	DE:		$L(q) = q_t + f_x - Pa^{-1}q_{xx} = 0, f = uq for$	<i>n</i> = 1
	TS:		$q_{n+1} = q_n + \Delta t q_t + \frac{1}{2} \Delta t^2 q_{tt} + \frac{1}{6} \Delta t^3 q_{tt} + \cdots$	
fo	or Pa ⁻¹ <	:3 >:	$q_t \cong -f_x$	
			$q_{tt} \cong -f_{xt} = -(f_q q_t)_x = (f_q f_q q_x)_x \Longrightarrow \beta(u^2 q_x)_x$	
			$q_{ttt} \cong (u^2 q_x)_{xt} \Longrightarrow \gamma (u^2 q_{xt})_x$	

Substitute into TS, take limit $\Delta t \Rightarrow \varepsilon > 0$, yields modified D*E*

mDE:

$$\mathsf{L}^{m}(q) = \mathsf{L}(q) - \frac{\Delta t}{2} \frac{\partial}{\partial x} \left(\beta u^{2} \frac{\partial q}{\partial x}\right) - \frac{\Delta t^{2}}{6} \frac{\partial}{\partial x} \left(\gamma u^{2} \frac{\partial^{2} q}{\partial t \partial x}\right) + \mathsf{TE}$$

STn.4 Dispersion Error Mode Characterization

$\mathbf{D}E \Rightarrow m\mathbf{D}E$:

*m*DE:
$$L^{m}(q) = \left[1 - \frac{\partial}{\partial x} \left(\frac{\gamma(\Delta t u)^{2}}{6} \frac{\partial}{\partial x}\right)\right] \frac{\partial q}{\partial t} + u \frac{\partial q}{\partial x} - \frac{\partial}{\partial x} \left[\left(\operatorname{Pa}^{-1} + \beta u^{2}\right) \frac{\partial q}{\partial x}\right] \approx 0$$

Modal analysis on GWS^h ($\mathbf{L}^{m}(q)$) + θ TS, $\omega = 2\pi/\lambda$

Fourier:	q(x,t)	$) = \sum_{\omega} A_{\omega} q_{\omega}(x,t)$	12	R	
\mathbf{CWS}^{h} .	$q_{\omega}(x, h)$	$t) = \exp \left(i\omega(x - ut)\right)$		¢ • ••••••	-0 0 0 0 0
GWS:	$q_{\omega}^{*}(j\Delta$	$x,t) = \exp(10(j\Delta x - Ut))$	-08	A	
$\mathbf{GWS}^{h} + \mathbf{\theta}\mathbf{T}$	ГS:	$Q_{j}(n\Delta t) = Gq_{\omega}^{h}, G = G_{\text{real}} + iG_{\text{imag}}$ $G = f(\omega, \beta, \gamma, C, k, \theta)$	0	<u></u>	1.5
analysis	5:	phase velocity : $U_{\omega} = \frac{1}{\omega \Delta x} \tan^{-1}$	$[G_R/G_I]$		
		numerical diffusion : $ G < 1$			

STn.5 Phase Velocity Error Spectra

Phase velocity U_{ω} error spectral distributions

STn.6 Traveling Wave, GWS^h (DE, mDE) + θ TS

1.2 0.8 0.4

0.4 solution -0.4 Solution graph

0.5

х

1.5

Problem statement

$$DM : L(q) = \frac{\partial q}{\partial t} + u \frac{\partial q}{\partial x} = 0$$

BC : $q(x = 0, t) = 0$
IC : $q(x, t = t_0) = q_0(x)$

Characteristic solution

$$q(x, t) = q_0 \exp i(x - ut)$$

GWS^{h} on DE, $mDE + \theta TS$ solutions, k = 1, $C = u\Delta t/\Delta x$

STn.7 Artificial Diffusion Error Spectra

Amplification factor |G| departure from unity

STn.8 GWS^h (*m*DE) + θ TS, Newton Template *for all n*

Scalar (heat/mass) transport on n

DE:
$$\mathsf{L}(q) = \frac{\partial q}{\partial t} + u_j \frac{\partial q}{\partial x_j} - \frac{1}{\operatorname{Pa}} \frac{\partial}{\partial x_j} \left[\left(1 + \operatorname{Re}^t \right) \frac{\partial q}{\partial x_j} \right] - s = 0$$

mDE:

$$\mathsf{L}^{m}(q) = \mathsf{L}(q) - \frac{\Delta t}{2} \frac{\partial}{\partial x_{j}} \bigg[\alpha u_{j} \frac{\partial q}{\partial t} + \beta u_{j} u_{k} \frac{\partial q}{\partial x_{k}} \bigg]$$

$$- \frac{\Delta t^{2}}{6} \frac{\partial}{\partial x_{j}} \bigg[\gamma u_{j} u_{k} \frac{\partial^{2} q}{\partial x_{k} \partial t} \bigg] + \dots = 0$$

Template pseudo-code additions for STn.2

 $\{WS\}_{e} = (const)(avg)_{e} \{dist\}_{e} (metric)[Matrix]_{e} \{Q \text{ or } data\}_{e} \\ [mJAC]_{e} = [JAC]_{e} + (\alpha, \Delta t/2)() \{UJ\}(0)[M30J0][] \\ + (\gamma, \Delta t^{2}/6)() \{UJ, UK\}(-1)[M400JK][] \\ + (\beta, \Delta t/2, \theta\Delta t)() \{UJ, UK\}(-1)[M400JK][] \\ + (\beta, \Delta t/2, \theta\Delta t)() \{UJ, UK\}(-1)[M400JK][] \\ \{mRES\}_{e} = \{RES\}_{e} + added \ terms \ [mJAC]_{e} \{Q\}_{e}$

STn.9 The "Rotating Cone," *n* = 2 Mass Transport

DM:
$$L(q) = q_t + \mathbf{u} \cdot \nabla q = 0$$

 $\mathbf{u} = r \omega \hat{\mathbf{e}}_{\theta}$
on $\partial \Omega_{in}$: $q(\mathbf{x}_b) = q_b \equiv 0$
 $at t_0$: $q(\mathbf{x}, t_0) = q_0(\mathbf{x}) \Rightarrow$ "gaussian hill"

top view

IC & exact solution

Select WS^{*h*} + θ TS solutions, $\overline{C} = 0.5 = \theta$, one revolution

Crank-Nicolson FD $GWS^h k = 1 FE$ $TWS^h, k = 1 FE$ $\alpha = 0 = \beta, \gamma = -0.5$ ϕ ϕ <

STn.10 The *n* = 2 Steady Peclet Problem

$$DE: L(\Theta) = \mathbf{u} \cdot \nabla\Theta - \frac{1}{Pe} \nabla^2 \Theta = 0$$

BCs: $\Theta(x_b) = 0$, $\Theta(1, 1) = 1$
data: $\mathbf{u} = \hat{\mathbf{i}} + \hat{\mathbf{j}}$
optimal TWS^h: $\beta \Delta t / 2 \Rightarrow Pe h^2 / 12$
error estimate $(k = 1)$: $\|e^h\|_E < Ch^4 \|data\|_{L^2}^2$
GWS^h, **optimal TWS**^h **solutions**, $k = 1$, $Pe = 200$
GWS^h, M = 10 × 10 TWS^h, M = 10 × 10 GWS^h, M = 30 × 30 TWS^h convergence, Pe = 10
 $\overline{WS}^h, M = 10 \times 10$ TWS^h, M = 10 × 10 GWS^h, M = 30 × 30 TWS^h convergence, Pe = 10

0.447945

0.00004

4.19

64x64

STn.11 The Gaussian Plume, n = 2, 3 Mass Transport

DM :
$$\mathbf{L}(q) = \mathbf{u} \cdot \nabla q - \mathrm{Pa}^{-1} \nabla \cdot (1 + \mathrm{Pa}^{t}) \nabla q - s = 0$$

BCs : $q_{in} = 0, \ \hat{\mathbf{n}} \cdot \nabla q_{out} = 0$
data : $\mathbf{u} = \mathbf{i}, \mathrm{Pa} \le 100, \ s(\mathbf{x}) = \mathrm{given}$

GWS^h DOF distributions, n = 2

																1	1	2	2	3	3
						-1				1	1	2	3	5	5	6	8	9	9	10	10
							4	6	9	12	14	16	18	20	21	22	24	25	25	26	26
	_		2	12	21	28	35	38	41	44	45	46	47	48	48	48	49	49	49	49	48
	0	8	50	93	100	97	96	93	90	88	86	83	81	79	77	75	74	72	71	69	71
	0	16	92	159	156	142	132	123	116	110	105	100	97	94	90	87	85	82	80	78	81
U →	0	25	98	162	166	145	137	129	121	115	109	105	100	97	93	90	88	85	83	81	- Gaussian
	-2	10	∢ 94	169	164	148	138	129	122	116	111	106	101	98	95	91	89	86	83	81	81
	-1	4	/ 50	97	103	101	98	95	93	90	88	86	83	81	80	77	76	74	73	71	71
		/	2	10	19	26	31	35	38	41	43	44	45	46	47	47	48	48	48	48	48
				-2	-2	-1	1	3	6	9	11	14	15	17	19	20	22	23	24	25	26
											1	2	2	4	5	5	7	8	8	9	10
																	1	1	2	2	3
		SO	urce	regi	on																1
		20		0-							ΕF	k =	2								

FE *k* = 1

 $\Gamma L K$

STn.12 Mass Transport, FEMLAB Pellet Problem

Conservation principles, fluidized bed creeping flow

flow field mass fraction, velocity contours $DM: \nabla \cdot \mathbf{u} = 0$ Re = 25Re = 50Re = 5Re = 75 $\mathbf{DP}: (\mathbf{u} \cdot \nabla)\mathbf{u} + \frac{1}{\rho_0}\nabla p - \frac{1}{\mathrm{Re}}\nabla^2 \mathbf{u} = 0$ Arrow: [x velocity (u),y velocity (v)] Re = 75, Sc = 40 Re = 5, Sc = 40 Re = 25. Sc = 40 Re = 50. Sc = 40 $\mathbf{D}M_c: \mathbf{u} \cdot \nabla c - \frac{1}{\operatorname{Re}\operatorname{Sc}} \nabla^2 c = 0$ catalyst $DM_c: \frac{1}{\text{ReSc}}\nabla^2 c + kc^2 = 0$ non-D groups Re = UR / v

Sc = v/D

STn.13 Summary, Unsteady *n* – D Scalar Transport

Essential ingredients of GWS^{h} (mDE) \Rightarrow TWS^{h} + θTS = {0}

 $approximation: \quad q(\mathbf{x},t) \approx q^{N}(\mathbf{x},t) \equiv q^{h}(\mathbf{x},t) = \bigcup_{e} q_{e}(\mathbf{x},t)$ $FE \text{ basis}: \quad q_{e}(\mathbf{x},t) = \{N_{k}(\zeta,\eta)\}^{T} \{Q(t)\}_{e}$ $error \text{ extremization}: \quad GWS^{N} = \int_{\Omega} \Psi_{\beta}(\mathbf{x}) L^{m}(q^{N}) d\tau \equiv \{0\} \Rightarrow GWS^{h}$ $matrix \text{ statement}: \quad GWS^{h} + \theta TS \Rightarrow [mJAC] \{\Delta Q\} = -\Delta t \{mRES\}$ $[mJAC] = S_{e}([mJAC]_{e}), \quad \{mRES\} = S_{e}(\{mRES\}_{e})$ $asymptotic \text{ convergenc } e: \quad \left\|e^{h}(t)\right\|_{E} \leq Ch_{e}^{f(k, \operatorname{Pe}, \beta)} \left\|data\right\|_{L^{2}}^{2} + C_{t}\Delta t^{f(\theta)} \left\|q_{0}\right\|_{E}$ $error \text{ spectra}: \quad U_{\omega} \& G \Rightarrow f(\omega, k, h, \Delta t, \theta, \alpha, \beta, \gamma)$

Template pseudo-code converts theory \Rightarrow **practice**

$$GWS^{h}(mDE) + \theta TS \Longrightarrow S_{e} \{WS\}_{e} \equiv \{0\}$$
$$\{WS\}_{e} \equiv (const)(avg)_{e} \{dist\}_{e} (metric)[Matrix]_{e} \{Q \text{ or } data\}_{e}$$
$$[JAC]_{e} \equiv \partial \{RES\}_{e} / \partial \{Q\}_{e}$$

STn.8A CFD Algorithm Error Spectra

