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Abstract 
 

 During the last decades many advances have been made in the prediction of turbulent 

flow behavior, due largely to new achievements in the field of computational fluid 

dynamics (CFD). For many years the Reynolds-averaged Navier-Stokes (RaNS) 

approach, which employs time-averaging, has been the work-horse of the industry in 

predicting turbulent flow in real-world applications. Although the accuracy of those 

turbulent flows and the details in flow structure are mostly limited due to its empirical 

modeling approach, the RaNS based algorithms are able to achieve solutions in relative 

short amounts of computational time using relatively coarse meshes. 

But with increased computational capacities, utilizing faster chips and more memory, a 

different group of theories are getting more attention, one of which is Large-Eddy-

Simulation (LES) theory. Able to deliver increased detail in turbulent flow structures and 

better accuracy due to the fact that a significant range of flow structures are predicted 

resolvable while only the unresolved, small scale structures are modeled, they are still 

restricted in use. This comes from the need to resolve the flow details in wall-bounded 

domains, which unfortunately makes up most of the real-world applications. This need 

leads to a very fine mesh requirement in the wall region, rivaling direct numerical 

simulation (DNS) approaches. Since the mesh requirement for LES resolution is a 

function of Reynolds (Re) and Rayleigh (Ra) numbers, computations are in general 

limited to relatively modest values of Re and Ra.  

 



 vi

 This dissertation examines several possible improvements to the class of LES 

formulations. It develops the basic formulation for the unsteady 3-dimensional, 

incompressible thermal Navier-Stokes equation system, focused on prediction of mixed 

convection flows in ventilated domains characterized by human habitation. This is 

accomplished by extending the rational LES theory, developed by Volker John, to the 

heat and/or mass transport problem class, with focus on boundary conditions suitable for 

bounded domain implementations. A new sub-grid scale (SGS) model based on the 

Taylor Weak Statement beta term is introduced, which models the dissipation of 

mechanical energy by the smallest eddies via artificial (numerical) diffusion. This model 

is compared to established SGS models, including that due to Smagornisky and several 

formulations developed by Layton and Illiescu. Numerical results for a range of 

benchmark and validation problems are generated to access accuracy and utility of the 

new LES formulation. 
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1.   Introduction 
 

Over the past decades the continuous development of better and faster computer 

technology has given computational mechanics a permanent and important place as a tool 

in engineering design and analysis methodology. The field has matured from scientific 

examination of simple test cases to industrial size design and real-time control 

simulations. In today’s world we compute airflow around whole aircraft, heat flow in 

microprocessors, blood circulation in human bodies, even whole weather pattern 

predictions for our planet. 

 But not only hardware improvements have advanced the field of CFD. During the 

years, mathematicians and engineers have developed new formulations and algorithms to 

better model the real-world physics in increasingly accurate ways. One of the fields of 

current interest, and one of the greatest challenges of our times, is the simulation of 

turbulent flows. Since most real-life applications are comprised of turbulent motion, 

much research thought has been given to that area, although understanding the exact 

physics behind the phenomena is still a challenge. 

Theories describe turbulent fluid motions as erratic, chaotic in nature, hence 

impossible to predict exactly. Nevertheless, from experiments we know that turbulence 

shows a predictable average behavior, underlying the erratic motion [Wil00]. This 

observation promotes a CFD attempt to calculate the average movement directly, with the 

action of superimposed oscillations modeled through diverse algorithmic approaches. The 

averaging can be done in time, resulting in Reynolds-averaged Navier-Stokes (RaNS) 
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schemes, or spatially, resulting in a theoretical approach termed Large Eddy Simulation 

(LES) theory. 

 

1.1 A Brief LES History 
 

 Large Eddy Simulation theory, specifically the idea of spatially filtering the 

Navier-Stokes equations to identify the resolvable scales, while the unresolved scale 

effects are modeled, has existed for more than four decades. The first successful 

implementation of this concept was due to Smagorinsky in 1963 [Sma63]. He suggested 

to model the action of filtering through an eddy viscosity, which he defined as a function 

of the filter width, the magnitude of the resolved velocity gradient and a global constant. 

This model proved adequate only for simple problems employing only one global flow 

pattern. Through its inability to be calibrated for locally changing flow phenomena, e.g. 

flow over a wing with a wake region, it is an insufficient formulation for simulation of 

multi-scale flow problems. 

     Improvements on the Smagorinsky model have been made, with the most 

successful implementation developed by Germano at al. in 1991 [GPMC91]. Its dynamic-

subgrid scale approach replaces the global constant with a local constant, which is 

computed through a code-internal multi-meshing scheme. In this way, the constant 

becomes an internal variable dependent on local flow conditions. Other researchers have 

built on this success, e.g. Lilly in 1992 [Lil92]. 

 A new approach to LES theory, called rational LES, was developed by Layton et 

al. in 2003 [IJL+03]. By formally filtering the Navier-Stokes equations via a physically 
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meaningful and mathematically exact process, they developed analytical expressions for 

three of the four LES theory-defined (Reynolds) stress tensors. This theory admits 

increased accuracy in the prediction of the energy distribution in the resolved scales, 

while reducing the modeling requirement to only the sub-grid scale Reynolds stress 

tensor. Details about its implementation using a finite element discretization, as well as a 

comparison of sub-grid scale closure models, are given by John [Joh04]. 

    

1.2 This Dissertation 
 

 The most common tool to tackle real-world CFD problems is currently still the 

RaNS approach, while LES and Direct Numerical Simulations (DNS) are used mainly in 

academic and research environments due to mesh resolution requirements, hence their 

limited applicability at larger Reynolds numbers. Furthermore, implementations of LES 

theory via a finite element discretization are rare, since the CFD community started with 

finite difference approximations, and then adapted finite volume formulations for 

geometric improvement. The reasons for applying a finite element implementation in 

CFD include at least the mathematical elegance of a process, purely defined in calculus, 

and the ability of its theory to precisely qualify approximation error in intrinsic norms. 

 The first challenge in this dissertation is the derivation of an equation system 

usable on a real-world applicable problem. Therefore an LES formulation for the 3-

dimensional, incompressible thermal Navier-Stokes equation system, focused on 

prediction of mixed convection flows ventilated domains characterized by human 

habitation is constructed. 
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 As second point, the rational LES theory is extended from previous publications 

to the heat and/or mass transport problem class, with focus on suitable boundary 

conditions for bounded domains. Additional terms are created for the influence of the 

filtering process onto the Navier-Stokes equation system, as well as expressions for an 

appropriate sub-grid scale (SGS) model. 

 The main issue in LES is the accurate representation of the energy cascade from 

resolved scales towards scales unresolved, the action of which must be modeled. Perhaps 

the most implemented sub-grid scale model remains that of Smagorinsky, [Smag63]. This 

work examines alternatives to the Smagorinsky sub-grid scale (SGS) model, recently 

proven to be of inappropriate order in filter measure, [Joh04].  The proposed alternative is 

via TWS, proven in the past as a scale-sensitive stabilization (numerical diffusion) 

process dominant at the smallest mesh scales. It examines the general feasibility of this 

approach, as well as the efficiency with which the mechanical energy dissipation induces 

algorithm stability.  

 A comparison to verification and benchmarking results for pertinent multi-

dimensional mixed convection problem statements examines the accuracy of the new 

method. In particularly, the TWS SGS model energy dissipation behavior is examined on 

a turbulent duct flow, as well as on a laminar driven cavity. The 8x1 thermal cavity test 

case is employed to detail differences between the TWS SGS model approach and several 

established SGS models in a laminar to turbulent flow simulation. 

 

In summary, the specific goals of this dissertation project were 
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- the derivation of an LES formulation for the 3-dimensional, incompressible 

thermal Navier-Stokes equation system, focused on prediction of mixed 

convection flows in ventilated domains characterized by human habitation, 

- the extension of the rational LES formulation to the heat and/or mass transport 

problem class, with focus on boundary conditions suitable to bounded domain 

implementation, 

- the assessment of the use of the TWS beta term to dissipate energy at the smallest 

resolved scales, compared to published rational and other LES sub-grid scale 

models, 

- and the generation of benchmark and validation class solutions pertinent to multi-

dimensional mixed convection problem statements. 

 

This dissertation documents the successful derivation of a 3-dimensional LES 

formulation for mass, momentum, energy and mass transport based on the rational LES 

approach, with the filtering extended to heat and mass transport expressions. Several 

boundary condition options for LES are examined. Particularly novel is the use of a dual 

theory LES approach, developed in this project to overcome rational LES theory 

restrictions on meshing regularity at boundaries. The TWS beta term was compared to 

SGS models from Smagorinsky, Layton and Illiescu and showed improved behavior 

regarding location and magnitude of energy dissipation, as well as positive influence on 

the stability of the algorithm. The benchmarking and validation results on the turbulent 

duct, driven cavity and the thermal cavity prove the potential usefulness of the newly 

developed TWS SGS model. 



 6

 

2. Large Eddy Simulation Theory 
 

2.1 Conservation Principles 

 
 The partial differential equation system describing the Eulerian conservation 

principles for viscous, thermal, incompressible Newtonian fluid is termed the Navier-

Stokes (NS) equations, complemented with a temperature-driven body force term, the 

energy equation and a mass transport equation. The NS partial differential equation 

(PDE) system dimensional form for mass, momentum, energy and mass transport 

contains  

( )0 0i

i

u
x

ρ ∂
= =

∂
L      (2.1) 

( )

( )
0

ˆ          0

ji i
i j i ij

j j i

r

uu u pu u u
t x x x

T T g

υ δ
ρ

β

⎡ ⎤⎛ ⎞∂∂ ∂∂
= + − + +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤+ − =⎣ ⎦ ig

L
  (2.2)  

( )
0

1 0j T
j j p p

T TT u T S
t x x c c

υα
ρ

⎡ ⎤∂ ∂ ∂
= + − − Φ − =⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
L  (2.3) 

( ) 0j
j j

c cc u c D S
t x x
ε ε

ε ε ε

⎡ ⎤∂ ∂∂
= + − − =⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
L    (2.4) 

The tensor index range 1 , 3i j n≤ ≤ = , and the Boussinesq approximation [Bou03] is 

employed to expresses the thermal body force in the momentum equation, (2.2). 
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This PDE system can be non-dimensionalized with the following scalings, 

* j
j

r

x
x

L
=    * j

j
r

u
u

U
=  *

r

r

tt L
U

=   

* r

r

T T
T
−

Θ =
Δ

 * 0
2
r

p
P

U
ρ

=  
*

3
r

cc
U L

ε
ε =   

generating the fundamental dimensionless groups 

  Re r rU L
υ

≡   Pr υ
α

≡   St r r

r

L
U

ω
≡  

 
3

2Gr r rg T Lβ
υ
Δ

≡  
2

Ec r

p r

U
c T

≡
Δ  2

GrAr
Re

≡  Sc
Dε

υ
≡   

for rω  being a frequency (traditionally associated with vortex shedding) and 
p

k
cα ρ= .  

The resulting NS conservation principles in preferred non-dimensional PDE form are 

( )0 0j

j

u
x

ρ
∂

= =
∂

L      (2.5) 

( ) 1St
Re

ˆ          0

ji i
i j i ij

j j i

uu uu u u p
t x x x

Ar

δ
⎡ ⎤⎛ ⎞∂∂ ∂∂

= + − + +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
+ Θ =ig

L
  (2.6)  

( ) 1 EcSt 0
Re Pr Rej

j j

u s
t x x Θ

⎡ ⎤∂Θ ∂ ∂Θ
Θ = + Θ − − Φ − =⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
L   (2.7) 
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( ) 1St 0
ReScj

j j

ccc u c s
t x x

ε
ε ε ε

⎡ ⎤∂∂ ∂
= + − − =⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
L    (2.8) 

Note the second term multiplied by 1Re−  in (2.6) vanishes identically, via (2.5). It is 

retained for future reference in the LES theory formulation. 

 

2.2 Spatial Filtering 

 
The goal in LES is to accurately resolve all flow scales ranging from that of the 

container to the limit of resolvability enforced by computer (mesh density) limitations. 

Appropriate spatial filtering operations need to be identified, resulting in the time-

dependent, space-filtered velocity vector iu , pressure p , temperature Θ  and mass 

fractions cε , respectively. This spatial operation is called filtering, and filtered variables 

are symbolized via an over-bar. Thus, each NS state variable member is divided into 

resolved and unresolved scales as 

   

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

, , ,

, , ,

, , ,

i j i j i j

j j j

j j j

u x t u x t u x t

x t x t x t

c x t c x t c x tε ε ε

′= +

′Θ = Θ + Θ

′= +

      (2.9) 

The resolved (computable) components in (2.9) are ( ), ,iu cεΘ , while ( ), ,iu cε′ ′ ′Θ  exist 

at the unresolved or subgrid scales. The filter operation must fulfill two distinct 

requirements; first the filter has to be a linear operator, e.g. 

     i i i iu v u vλ λ+ = +     (2.10) 
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and second, differentiation and filtering operations must commute, i.e. 

   ,    ,  , 1,...,i i i i

j j

u u u u i j d
x x t t

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
   (2.11) 

If the NS state variable describes a flow field that is adequately smooth in space and time, 

then filtering and differentiation generally commute. 

The filtering operation employs the mathematical convolution of each state variable 

member with a filter function g , e.g., in one dimension 

   ( ) ( ) ( ),  ,u x t g y u x y t dy
∞

−∞

≡ −∫     (2.12) 

In the following sections the convolution (2.12) is multi-dimensional symbolized as 

   ( ) ( ), * ,i j i ju x t g u x tδ=      (2.13) 

where δ signifies the (constant) scale (measure) of the filter. 

The commonly applied filter functions for LES formulations to date are the box filter, the 

sharp spectral filter, and the Gaussian filter (see Table 2.1)*. Figure 2.1 shows these filter 

functions in one-dimensional physical space, while Figure 2.2 shows their transfer 

functions in wave number or Fourier space. The filtering Fourier transform process is 

formed in wave number space, since it is often possible to find simpler approximations to 

complex functions in Fourier space, which then can be transferred back into physical 

space.    

Without definition of a specific filter function, filtering (2.5) – (2.8) results in the Navier-

Stokes LES theory PDE system 

                                                 
* All tables and figures are compiled in the appendix. 
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 ( )0 0j

j

u
x

ρ
∂

= =
∂

L      (2.14) 

( )
0

1St
Re

ˆ          0

ji i
i j i ij

j j i

uu u pu u u
t x x x

Ar

δ
ρ

⎡ ⎤⎛ ⎞∂∂ ∂∂
= + − + +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
+ Θ =ig

L
  (2.15)  

( ) 1 EcSt source 0
Re Pr Rej

j j

u
t x x

⎡ ⎤∂Θ ∂ ∂Θ
Θ = + Θ − − Φ + =⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
L  (2.16) 

( ) 1St 0
ReScj

j j

c cc u c
t x x
ε ε

ε ε

⎡ ⎤∂ ∂∂
= + − =⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
L     (2.17) 

 

2.3 LES Closure for Momentum 

 
The LES theory-created non-linear convection terms in equations (2.15) to (2.17) lead to 

the LES closure requirement. For the momentum equation (2.15), this term has 

historically [Pop00] been expressed as 

( ) ( ) N

1
3

j i j i j j i j j ji i i i

R r R
j i ij j i ij kk ij

u u u u u u u u u u u u u u

RL C ijij ij

u u u uτ τ τ δ

′ ′ ′ ′= + − + + +

= + = + +

���	��
 ���	��


  (2.18) 

where ijL , ijC  and ijR  are termed the Leonard, Cross and subgrid scale (SGS) Reynolds 

stresses, respectively. The isotropic part R
kkτ  of the residual LES stress tensor R

ijτ  can be 

included in a modified pressure. The remaining anisotropic stress tensor requires 
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determination, which to date has generally been accomplished via an eddy viscosity 

model in the form 

    2r
ij t ijSτ υ≡ −        (2.19) 

This thus requires definition of a “turbulent eddy viscosity” tυ , while the strain rate 

tensor definition is 

    
1
2

ji
ij

j i

uuS
x x

⎛ ⎞∂∂
= +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

    (2.20)  

This historical modeling process has met with some success, [Pop00]. Its principle 

limitation is that it is only a model. In this research, this requirement for a “total model” 

is replaced via the rational LES theory [IJL+03], [Joh04]. The mathematically, i.e., 

unmodified, classic definition of the filtered convection term in (2.15) is 

j i j j j ji i i i
u u u u u u u u u u′ ′ ′ ′= + + +    (2.21) 

The first tensor in (2.21) signifies the convection influence of the large scale flow 

structures, called eddies, onto themselves. The second and third tensors describe the 

convection interaction between the resolved and unresolved (SGS) eddies. The last term 

is termed the sub-grid scale (SGS) tensor, the action of which is mechanical energy 

dissipation at the top of the unresolved scales of the flow. 

To minimize modeling requirements, the goal is to mathematically formalize the 

convolution process leading to (2.21). Via the convolution, the Fourier transform of the 

first three terms on the right side of (2.21) are 

    ( ) ( ) ( )j j ii
F u u F g F u uδ=     (2.22) 
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( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

*

*

j j ii

j j ii

F u u F g F u F u

F u u F g F u F u

δ

δ

′ ′=

′ ′=
   (2.23) 

 For ( ) 0F gδ ≠  the Fourier transform of iu  is 

    ( ) ( ) ( )
( )

( )
( )

i i
i

F g F u F u
F u

F g F g
δ

δ δ

= =    (2.24) 

Using the decomposition i i iu u u′= +  one determines 

    ( ) ( ) ( )1 1i iF u F u
F gδ

⎛ ⎞
′ = −⎜ ⎟⎜ ⎟

⎝ ⎠
    (2.25) 

Inserting (2.25) into (2.23) results in 

   

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1* 1

1 1 *

j j ii

j j ii

j j ii

F u u F g F u u

F u u F g F u F u
F g

F u u F g F u F u
F g

δ

δ
δ

δ
δ

=

⎛ ⎞⎛ ⎞
′ = −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
′ = −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

  (2.26) 

Since the Fourier transform of the resolved scales is available, an approximation has to be 

found for ( )F gδ  and 
( )
1

F gδ

 to determine (2.26). 

One approach used quite often in the past, is via a second order Taylor series 

approximation to the Gaussian. For the filter measure δ , the result is 

   
( )( ) ( )

( )( ) ( )

2
2 42

2
2 42

, 1
4

1 1
, 4

i
i

i

i

y
F g y O

y
O

F g y

δ

δ

δ δ δ
γ

δ δ
δ γ

= − +

= + +

    (2.27) 
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 Inserting (2.27) into (2.26) and employing certain properties of Fourier transforms 

results in 

   

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

22
4

22
4

22
4

4

4

4

j i
j j ii

k k

i
j ji

k k

j
j ii

k k

u u
F u u F u u F O

x x

uF u u F u O
x x

u
F u u F u O

x x

δ δ
γ

δ δ
γ

δ δ
γ

⎛ ⎞∂
⎜ ⎟= + +
⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∂′ = − +⎜ ⎟∂ ∂⎝ ⎠
⎛ ⎞∂

′ = − +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

  (2.28) 

Applying the inverse Fourier transform gives the filtered approximations in physical 

space  

   

( ) ( )

( )

( )

22
4

22
4

22
4

4

4

4

j i
j j ii

k k

i
j ji

k k

j
j ii

k k

u u
u u u u O

x x

uu u u O
x x

u
u u u O

x x

δ δ
γ

δ δ
γ

δ δ
γ

∂
= + +

∂ ∂

∂′ = − +
∂ ∂

∂
′ = − +

∂ ∂

    (2.29) 

Then, using kinematics relations and omitting all terms ( )4O δ  or higher, the final 

expression for the sum is 

   
2

2
j i

j i j i j i j i
k k

u uu u u u u u u u
x x

δ
γ

∂ ∂′ ′+ + = +
∂ ∂

    (2.30) 

The problem with the second order Taylor series polynomial approximation of the 

Gaussian filter is that it is accurate only in a very small wave number range, and 

completely wrong for large wave numbers (see Figure 2.3). Since the task of the 

Gaussian filter is to render negligible the small eddies, which corresponds to large wave 

numbers in Fourier space, this approximation is quite unsatisfactory. 
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Thereby, a more accurate approximation for the Gaussian filter is needed. The lowest 

order rational approximation of the exponential in the Gaussian filter [GL00] is 

    ( )2 21
1

axe O a x
ax

= +
+

    (2.31) 

which leads to the following Pade approximations for ( )F gδ  and 
( )
1

F gδ

 

   

( )( ) ( )

( )( ) ( )

4
2

2

2
2 42

1,

1
4

1 1
, 4

i
i

i

i

F g y O
y

y
O

F g y

δ

δ

δ δ

γ

δ δ
δ γ

= +

+

= + +

    (2.32) 

From Figure 2.4 it is clear that the Pade form much better approximates the behavior of 

the Gaussian filter in Fourier space. Further, this approximation is monotone, non-

negative, an important contribution for realization of the LES stress tensor formulation, 

[Joh04]. 

Using (2.32) in (2.26) and taking the inverse Fourier transform yields 

  

( ) ( )

( )

( )

12 2
4

1 22 2 2
4

1 22 2 2
4

4

4 4

4 4

j ij j ii
k k

i
j ij ji

k k k k

j
j ij ii

k k k k

u u u u O
x x

uu u u O
x x x x

u
u u u O

x x x x

δδ δ
γ

δ δδ δ
γ γ

δ δδ δ
γ γ

−

−

−

⎛ ⎞∂
= − +⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞ ⎛ ⎞∂∂′ = − − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂⎛ ⎞∂′ = − − +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

  (2.33) 

which, when omitting all term ( )4O δ  or higher, leads to 
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12 2 2

2 4
j i

j i j i j i j i ij
k k k k

u uu u u u u u u u
x x x x

δ δδ
γ γ

−
∂⎛ ⎞ ⎛ ⎞∂∂′ ′+ + = + −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

  (2.34) 

where ijδ  is the Kronecker delta. 

In the following, the inverse operator in (2.34) is defined as 

   

12 2

4ij
k k

A
x x

δδ
γ

−
⎛ ⎞∂

≡ −⎜ ⎟∂ ∂⎝ ⎠
     (2.35) 

hence the matrix operator A defines an elliptic, second order boundary value problem, 

generating a harmonic PDE which John terms the “auxiliary problem.” For the 

momentum equation, the rational Pade formulation results in an analytical form for the 

first three LES theory-generated Reynolds stress tensors as 

   
j i

ij
l l

u uR A
x x

∂⎛ ⎞∂
= ⎜ ⎟∂ ∂⎝ ⎠

      (2.36) 

hence 

   ( )
22

0
4

ij j i
ij ij

k k l l

R u uR R
x x x x

δ
γ

∂ ∂ ∂
= − + − =

∂ ∂ ∂ ∂
L   (2.37) 

Since this represents an elliptic boundary value problem, boundary conditions (BCs) on 

the entire domain closure are required. For previous studies on unbounded domains, 

Layton et al, [IJL+03], have employed the homogeneous Neumann condition 

    ˆ 0ij
k

k

R
n

x
∂⎛ ⎞

=⎜ ⎟∂⎝ ⎠
     (2.38) 
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2.4 LES for Scalar Transport 

 
One of the original contributions in this dissertation is to extend the theory of the 

previous section to the energy and mass transport PDEs, (2.16) and (2.17). 

The filtering of the energy equation produces the advection vector 

  j j j j ju u u u u′ ′ ′ ′Θ = Θ + Θ + Θ + Θ     (2.39) 

Following the same derivations as for the momentum equation yields 

   j
j j j j

k k

u
u u u u A

x x
∂⎛ ⎞∂Θ′ ′Θ + Θ + Θ = Θ + ⎜ ⎟∂ ∂⎝ ⎠

   (2.40) 

with the auxiliary problem  

hence   

( )
22

    

0
4

j
j

l l

j j
j j

k k l l

u
Y A

x x

Y u
Y Y

x x x x
δ

γ

∂⎛ ⎞∂Θ
= ⎜ ⎟∂ ∂⎝ ⎠

∂ ∂ ∂Θ
= − + − =

∂ ∂ ∂ ∂
L

   (2.41) 

For each species a separate transport equation is required, see (2.17), which has a mass 

advection vector of the form 

   j j j j ju c u c u c u c u cε ε ε ε ε′ ′ ′ ′= + + +    (2.42) 

The Fourier analysis leads to   

   j
j j j j

k k

u cu c u c u c u c A
x x

ε
ε ε ε ε

∂⎛ ⎞∂′ ′+ + = + ⎜ ⎟∂ ∂⎝ ⎠
   (2.43) 

with  
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hence   

( )
22

    

0
4

j
j

l l

j j
j j

k k l l

u cZ A
x x

Z u cZ Z
x x x x

ε

εδ
γ

∂⎛ ⎞∂
= ⎜ ⎟∂ ∂⎝ ⎠

∂ ∂ ∂
= − + − =

∂ ∂ ∂ ∂
L

  (2.44) 

 

2.5 Closure for the SGS Reynolds Tensor 

 
The last term of Eqn. (2.21) to be analyzed in Fourier space is the SGS Reynolds stress 

tensor. Using the second order Taylor series polynomial to approximate the Gaussian 

filter results in, [Joh04] 

    ( )
2 24

6
216

j i
j i

k k l l

u uu u O
x x x x

δ δ
γ

∂ ∂′ ′ = +
∂ ∂ ∂ ∂

   (2.45) 

and for the second order Pade approximation 

    ( )
2 24

6
216

j i
j i

k k l l

u uu u A O
x x x x

δ δ
γ

⎛ ⎞∂ ∂′ ′ = +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
  (2.46) 

Since the lead terms in both (2.45) and (2.46) are of order ( )4O δ , they are negligible in 

context of the order of terms retained in (2.33). Hence, to the significant order, the 

developed LES theory for the approximation to the Gaussian filter is not capable of 

generating a useful expression for j i
u u′ ′ . The same conclusion applies to ju′ ′Θ  and ju cε′ ′ . 

Therefore, the SGS Reynolds stress and heat/mass flux vectors must be modeled. A 

detailed examination of the options available is given in section 2.7. 
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2.6 Sub-grid Scale Closure 

 
LES theory characterizes turbulent motion as consisting of flow structures called 

eddies possessing a wide range of scales. The largest eddies are of enclosure dimension 

scale, are the most energy rich structures, and cascade their energy to progressively 

smaller scales, until at the smallest scale the mechanical energy is dissipated into heat by 

the action of viscosity for genuine NS. This phenomena is termed the energy cascade. 

The LES filter size δ  determines the eddy scales that are resolved. All scales that are 

smaller than this so-called cut-off scale have to be modeled. Hence enters the LES sub-

grid scale (SGS) model, the purpose of which is to emulate the action of viscosity in 

dissipating energy at the smallest resolvable scale. 

 

The theoretically simplest LES SGS model for momentum, developed by 

Smagorinsky [Sma63], defines a turbulent eddy viscosity. Based on classical mixing-

length hypotheses, the Smagorinsky SGS model is 

    j t iji
u u Sυ′ ′ ≡ −      (2.47)  

   2 2 ˆ
t s sF

C S C Sυ δ δ= =      (2.48) 

for the Frobenius norm definition  

    ( )1/ 2ˆ 2 ij ijF
S S S S≡ =     (2.49). 

Cs is the “Smagorinsky constant,” a global constant that has to be adjusted for each 

applied flow problem [ZSK93]. Furthermore, for wall-bounded problems it is necessary 

to adjust the filter width closer to the wall, or develop a wall-function expression to 
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reduce the influence of the sub-grid scale term when approaching the wall. The filter for 

the Smagorinsky SGS closure model is the simple box filter, see Figure 2.1. Adjusting 

the Smagorinsky model with a van-Driest damping function, [Cut01], has show 

acceptable performance for select benchmark problems. 

However, recent numerical studies, [Joh04], confirm that the Smagorinsky formulation is 

overly diffusive, confirming that (2.48) being only second-order in filter scaleδ  is 

theoretically inconsistent with the rational LES theory. Alternative eddy-viscosity type 

SGS closure models were proposed by Illiescu-Layton [IL98], based on the physical 

reasoning that the turbulent diffusion parameters should depend on the kinetic energy of 

the small eddies. Using an expression developed by Kolmogorov and Prandtl leads to 

    
2

2

1
2t m icl uυ ρ ′=      (2.50) 

with ml  the mixing length, usually set to ml δ= . Note that 
2
i  is the L2 norm. Neglecting 

terms of ( )4O δ , and using Eqn. (2.25) and (2.32), gives an approximation for iu′  as 

    
22

4
i

i
k k

uu
x x

δ
γ

∂′ ≈ −
∂ ∂

     (2.51) 

Inserting (2.51) into (2.50) gives 

      ( )
23

4

2

i
t s

k k

uC O
x x

δυ δ
γ

∂
= +

∂ ∂    (2.52) 

which approximates more closely the rational LES order requirement. 

A second possibility is to base the diffusion parameter on the averaged kinetic energy, 

which results in 
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23

2

i
t s

k k

uC g
x xδ

δυ
γ

∂
= ∗

∂ ∂    (2.53) 

With 

 

( ) ( ) ( ) ( )

( ) ( )
2 22

22

1 1

                       
4 4

i i i

i i
i

k k

F u g u F g F u
F g

y uF g F u F g
x x

δ δ
δ

δ δ
δδ

γ γ

⎛ ⎞
− ∗ = −⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛ ⎞∂⎜ ⎟≈ = − ∗⎜ ⎟⎜ ⎟ ∂ ∂⎝ ⎠⎝ ⎠

 (2.54) 

a third model is derived as, [Joh04], [IL98], 

    

23

2

i
t s j

k k

uC u g
x xδ

δυ
γ

∂
= − ∗

∂ ∂    (2.55) 

which is also third order in filter scale δ . Approximating the convolution operation on 

gδ  , similar to Eqn. (2.32) in terms of the inverse operator A, leads to the alternatives for 

(2.52) and (2.55) as 

    ( )
3

2t s iC A uδυ
γ

=     (2.56) 

    ( )
3

2t s j iC u A uδυ
γ

= −    (2.57) 
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2.7 An Alternative SGS Formulation 

 
 As an alternative to strictly “modeling” the SGS tensor, Boris et al. [BGO+92] 

conjectured that, since an LES SGS model in principle adds diffusion, it should be 

possible to directly use the numerical diffusion supplied by a CFD algorithm, hence their 

“Monotone Integrated LES” model. Various implementations of this thought can be 

found, [RF99], [SCC01], [JC02]. Using their flux-corrected transport algorithm, this 

numerical diffusion operator indeed provided the mechanical energy drainage required to 

create dissipation at the sub-grid level. 

 

At the UT CFD Laboratory extensive research has been completed on development of a 

NS conservation principle modification process, [Kol00], [Kim88], [Cha97], via Taylor 

series manipulations. Analytical expressions result from this theory that, properly chosen, 

can increase stability and error control of finite element CFD algorithms. Following the 

idea of the direct use of algorithm numerical diffusion, the same effect should be 

provided by the Taylor Weak Statement (TWS) algorithm “beta” term modification to 

Navier-Stokes PDE systems. The analytical theory is established for both steady and 

time-accurate unsteady NS, and in both cases the TWS beta term theory confirms 

diffusion is limited to the smallest mesh scales. 

 

A unique aspect of finite element implementations of the TWS theory is that precise a 

priori error estimates exist for asymptotic convergence under mesh refinement in the 
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intrinsic energy semi-norm, identical to the square of the L2 norm. Specifically, the TWS 

formulation for unsteady NS solution possesses asymptotic error estimates of the forms 

  

( ) ( ) ( )

( )
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,

min , 1 for Re 0
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⎧ − >⎪= ⎨ − =⎪⎩

  (2.58) 

where k  symbolizes the finite element basis degree, r is the smoothness measure of the 

exact solution, and h is the measure of the mesh. For steady flow and smooth initial data 

the error estimate for the 1k =  basis implementation is   

    ( ) 4
,

h h

E
e u Ch data

Ω ∂Ω
≤     (2.59) 

The accuracy of (2.58) – (2.59) has been thoroughly validated. The beta term derivation 

is originally based on a Taylor series expansion of the NS time term [Kim88], resulting in 

the analytically modified momentum conservation equation  

  ( ) ( ) additional terms
2

m i
i i j k

j k

utu u u u
x x

β
⎛ ⎞∂Δ ∂
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L L   (2.60) 

Further research by Kolesnikov, [Kol00], for steady NS flow eliminates the arbitrary 

coefficient β  in (2.60) leading to 
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i i j k
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x x
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For adequate capture of the energy in the resolved scales, the relation between filter scale 

and mesh measure is, [Pop00],  

     2
h
δ

≥      (2.62) 
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Using (2.62) in the theory of the error estimate, I expect that the FE implementation of 

the rational LES theory should approximate a fourth-order formulation in δ for the 2k =  

quadratic basis unsteady theory, or the 1k = linear basis steady flow theory. Based on 

these options, the TWS beta diffusive flux vector set may prove appropriate for meeting 

the SGS dissipation tensor scale requirement. Selecting the later, and realizing the SGS 

tensor must be symmetric at the minimum, hence recalling [NoB89], the proposed model 

is 

  ( ) ( )
2

4Re
24j j k ik i k jki

hu u u u S u u S Oβ δ′ ′− = + +   (2.63) 

where β  is an adjustable factor (for debug). The companion expressions, theoretically 

derived for the energy and mass transport PDEs, are the vectors 
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   ( )
2

4ReSc
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c
j k j
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h cu c u u O
x

ε
ε

β δ∂′ ′− = +
∂   (2.65) 

 

2.8 Rational LES Flux Vector Representation 

 
This dissertation project approach is to develop the rational LES Navier-Stokes PDE 

system in flux vector form. Leaving the SGS tensor model general, the established LES 

NS PDE system is 

 ( )0 0j

j

u
x

ρ
∂

= =
∂

L       (2.66) 
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where 
0

pP ρ≡  is the kinematic pressure. This system is conveniently coalesced in the 

flux vector form 

  ( ) ( ) 0v
j j

j

qq f f s
t x
α

α αα

∂ ∂
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L    (2.70) 

with the set of companion Poisson equations of the form  

  ( ) ( )
2

, 0A
A A A

k k

qq s q q
x x α
∂

= − − =
∂ ∂

L     (2.71) 

where qα  contains the NS state variable members, Aq  the auxiliary state variable 

members, jf  and jf υ are the convective and diffusive flux vectors, respectively, and sα  

and As stand for the appropriate source term array. Applied to Eqn. (2.66) – (2.69) the 

following equalities are assigned: 



 25
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In the instance of the SGS tensor selected from the TWS stability theory, then 
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  (2.76) 

with the sole model constants β  scaling the SGS tensor model for all variables. For the 

auxiliary problems, Eqns. (2.22), (2.24) and (2.25), Eqn. (2.71) results for the definitions 
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    (2.78) 

Notice that (2.71) – (2.75) do not include the mass conservation constraint (2.66), as well 

as an equation for kinematic pressure. Both will be handled by a “pressure projection” 

CFD algorithm formulation, developed in completeness in the next chapter.  

 

2.9 Boundary and Initial Conditions 

 
The established LES equation system (2.70) – (2.78) is a coupled set of elliptic nonlinear 

PDEs, hence requires definition of initial and boundary conditions for well-posedness. It 

is assumed that the PDE set is defined within a domain Ω  with a boundary closure Γ . 

Furthermore, the boundary can be subdivided into DΓ  and NΓ . This leads to the 

following generalized boundary condition statements 
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The given boundary data include 0 0 0, , , , , ,i nw F F G cτ εΘ  and 0E . The initial conditions are 
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The generalized boundary conditions must then be translated into various physical 

conditions. The simplest, and most often used boundary condition is Dirichlet, which 

occurs when a fixed value of a variable is assigned, e.g. a given wall temperature or a 

velocity at a surface. For 0 on iu = Γ , the condition is termed “no-slip”, since the fluid 

sticks to the wall. The no-slip BC is generally required for viscous flow simulations. 

However, for the LES theory the no-slip boundary condition is quite inappropriate. Note 

that the velocity has been convolved with a filter of scale δ . Hence, the velocity at a 

certain point has been averaged from values within a spherical neighborhood of radius δ . 
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From Figure 2.5 it is obvious that for the wall velocity 0u = , the filtered mean velocity is 

0u ≠ .  

Hence, the proposed more appropriate boundary condition for LES theory at walls is slip 

with a friction condition, [JA06], [JLS04]. The slip boundary condition with friction has 

the form of 
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    (2.83) 

where no penetration through the wall occurs for 0w = . The slip with linear friction and 

no penetration boundary condition is expressed through 
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If it is assumed that the value of a variable doesn’t change spatially, hence 0u
n

∂
=

∂
 at Γ , 

then a homogeneous Neumann BC is given, which is also called the “outflow” BC. 

 In terms of (2.79) this implies 
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γ Γ Γ

⎛ ⎞⎛ ⎞
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Another approach to theorizing a wall boundary condition is through adaptations on 

turbulent boundary layer models. For this approach, the LES theory is implemented only 

down to Y , the first node off the no-slip wall. In a wall-layer model, the LES simulation 
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supplies a velocity at Y , which is then used to determine the local wall stress. This is 

then fed back to the LES simulation in form of proper momentum flux at the wall due to 

normal diffusion. 

An example is the implementation of Schumann [Sch75], who directly related the shear 

stresses at the wall to the velocity at the node off the wall via 

 ( )
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where •  denotes averaging over a plane parallel to the wall. The mean wall stress wτ  

has to be computed iteratively using the averaged velocity at point Y, ( ),u x Y , in the 

law-of-the-wall correlation, [Wil00] 
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with 5.0B =  and 0.41κ = . 

 

A third way of implementing appropriate boundary conditions is via the zonal approach, 

which is based on solving a separate explicit set of equations for the inner layer, while the 

LES theory PDE set is limited to the core region of the domain. An example of this 

approach is the Two-Layer Model (TLM), [BBP96], which uses two separate meshes. On 

the inner layer mesh the turbulent boundary layer equations are solved according to 
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   ( ) ( ) 0i i
n i t

i n n

u upu u
t x x x

υ υ
⎛ ⎞∂ ∂∂ ∂

+ + − + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
    (2.88) 

where n  indicates the normal direction from the wall. The normal velocity nu  is 

calculated based on mass conservation in the inner layer. The wall is equipped with no-

slip condition, while the velocity at the interface between the meshes is provided by the 

LES simulation of the core mesh. Integration of (2.88) results in a wall-stress, which 

supplies the boundary condition for the LES model. 

A second example of the zonal approach is Detached Eddy Simulation (DES), [SJSA97], 

which uses only one mesh. The boundary layer region is under the control of a RaNS set 

of PDEs, while a LES PDE system is used in the core region. Since no zonal interface 

exist, the velocity is smooth everywhere.  

 

In this dissertation, an alternative theory for circumventing the problem with wall 

boundary conditions is to use a dual-LES theory, in principle similar to the DES approach 

by Spalart. The computational domain is divided into non-overlapping domains, 

LES WallΩ = Ω ∪ Ω . Within LESΩ , which is the unbounded interior of Ω , the developed 

LES theory according to Eqn. (2.70) – (2.78) is appropriate. In WallΩ , which constitutes 

regions near the walls of Ω , the rational LES theory solutions for ijR , jY  and jZ  are 

disabled in favor of a lower order LES theory, generated via the box filter for example, 

whence the SGS closure model constitutes a turbulent eddy viscosity model analogous to 

Smagorinsky. The mathematically rigorous rational LES theory requires the filter scale 

δ  to be a constant, hence limits implementations to uniform meshes. No such restriction 
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exists for convolution with the box filter. Therefore, a non-uniform mesh can be used in 

the wall region, which allows the application of the no-slip boundary condition assuming 

that the mesh is sufficiently refined in the wall regions.    
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3. LES Theory CFD Algorithm 
 

3.1 Continuity Constraint Algorithm 
 
 
The Continuity Constraint Method (CCM), developed at the UT CFD Laboratory by 

Williams, [Wil93], belongs to the class of “pressure relaxation” CFD algorithms, 

[AH70], [SRY78]. For incompressible Navier-Stokes, pressure has two tasks: to enforce 

the constraint of mass conservation (2.1), and to be a balance force in the momentum 

equations. This theory directly addresses both requirements, hence is selected for 

generating the derived LES theory CFD algorithm. 

 

3.2 Continuity Error 
 

An explicit Taylor series expansion expresses the divergence-free, analytically exact 

velocity field at time step 1nt +  as a function of the velocity at time step nt  via 
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n n i i
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n n

u utu u t O t
t t

+ ∂ ∂Δ
= + Δ + + Δ

∂ ∂
     (3.1)  

Assuming that any approximated velocity field *
iu  can be calculated from a guessed 

pressure field, *P , an equation for *
iu  at time 1nt +  is 
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i i
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At nt t= , the guessed velocity field is the same as the old velocity field, hence 
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where ijSGS  is the placeholder for the sub-grid scale model, e.g. in the case of the TWS 

SGS model, it is Eqn. (2.63). The following second temporal derivatives can be formed 
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Subtracting Eq. (3.1) from (3.2) leads to the error in the velocity field 
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Since the curl of (3.5) is identically zero, the difference between the exact and any CFD 

approximate velocity field must correspond mathematically to the gradient of a potential 

function, hence 
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The LES theory implementation must be time-accurate, which implies an implicit Taylor 

series (TS) approach. A theta-implicit time Taylor series yields 
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Subtracting (3.8) from (3.7) leads to 
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Using the momentum equation to replace the time derivative, (3.9) becomes 
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For a guessed pressure *P  at time 1nt + , the velocity field *
iu  does not satisfy the mass 

conservation constraint, hence 

   ( )
* *

* * *0i i
j j i

i j j

u uu u u
x x x

∂ ∂ ∂
≠ ⇒ ≠

∂ ∂ ∂
    (3.11) 

Therefore, for a suitable guessed pressure *P  at time 1nt + , Eq. (3.10) becomes 
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The theta-implicit divergence error is expressed through subtraction of Eq. (3.12) from 

(3.10) 
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∂ ∂⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞∂⎛ ⎞ ∂∂∂∂ ⎢ ⎥+ Δ + − ⎜ + ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∂ ∂⎡ ⎤ ⎡ ⎤+ Δ − + Δ −⎣ ⎦ ⎣ ⎦∂ ∂

∂ −
+ Δ + − + Δ

∂

   (3.13) 

This equation has six modes of error generation for the velocity field at 1nt + , namely due 

to advection, laminar diffusion, Reynolds and SGS stress tensor, pressure and the 

buoyancy body force. Since only the pressure term can be expressed through a potential 

function, all other terms are considered mathematically intractable, in the manner of the 

original theory, [Wil93]. That means that the error generated by the remaining terms must 

be reduced through an iterative process guaranteeing that * 1n
i iu u +→  as the iteration 

proceeds. With p the iteration parameter, the error at iteration p+1 between the exact 

velocity vector at time step 1nt +  and a CFD-generated velocity vector is assumed of the 

form 

   ( )
1

1*

1
1

p
p

i i n
i n

u u
x

+
+

+
+

∂φ
− = −

∂
      (3.14) 

Using Eq. (3.14), and neglecting the intractable terms in Eq. (3.13), yields 
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( )1 *

1 1

pp

i in n

P P
t

x x

+

+ +

∂ −∂φ
≈ θΔ

∂ ∂
     (3.15) 

Integrating this expression, with integration constant set to zero leads to an expression for 

the genuine pressure at time 1nt +  as 

1*
1 11

1pp p

n nn
P P

t
+

+ ++
= + φ

θΔ
     (3.16) 

The problem in this expression is the fact that the pressure at iteration p requires the yet 

unknown potential function at iteration p+1. A solution to this dilemma is to accumulate 

the solutions for φ  over the iterative sequence yielding 

   *
11

1

1 pp

nnn
P P

t
α

αθ ++
=

= + φ
Δ ∑      (3.17) 

where nP  is the known, mass-conserving kinematic pressure at the original time station. 

 

3.3 Potential Function 
 

Constraint theory completion requires an equation to solve for the identified potential 

function φ . From (3.14), the definition for the potential function is 

   ( )*
i i

i

u u
x

∂φ
= −

∂
       (3.18) 

with iu the constraint fulfilling velocity vector field and *
iu  any other velocity vector 

which is assumed not solenoidal. Applying the divergence operator to Eqn. (3.18) yields 

  ( )
* *

* i i i
i i

i i i i i i

u u uu u
x x x x x x

⎛ ⎞ ∂ ∂ ∂∂ ∂φ ∂
= − = − =⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

    (3.19) 
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Hence, the continuity constraint function φ  is the solution to an elliptic boundary value 

problem of Poisson type 

    ( )
*2

0i

i i i

u
x x x

∂∂ φ
φ = − =

∂ ∂ ∂
L     (3.20) 

The natural boundary condition for (3.20)  is the projection of the gradient of φ onto the 

outward-pointing normal of the boundary. From Eqn. (3.18), this projection is related to 

the velocity vector error at the boundary as 

    ( )*ˆ ˆi i i i
i

n u u n
x

∂φ
= −

∂
     (3.21) 

The required determinations for (3.21) are inflow, outflow, symmetry plane and no-slip 

or slip at a solid surface. At an inflow plane the typical BC is velocity vector fixed, i.e., 

Dirichlet BC, hence *
i iu u= , resulting in (3.21) as homogeneous Neumann 

     ˆ 0i
i

n
x

∂φ
=

∂
      (3.22) 

At an outflow plane it is assumed that a sufficiently long flow straightening section exists 

such that the velocity vector is essentially aligned with the outward pointing normal. 

With this assumption it can be argued that the continuity error in the tangential direction 

is negligible, via the iterative process, hence 

    
( )

( )

*

*

0

0

n n

s s

u u
n

u u
s

∂φ
= − ≠

∂
∂φ

= − ≈
∂

     (3.23) 

This results in the potential function being a constant along this boundary, which for 

mathematical convenience is chosen as zero, hence at outflow 
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    constant=0φ =       (3.24) 

On a symmetry plane, the normal velocity component is zero, hence the homogeneous 

Neumann condition is valid. 

The velocity boundary condition at walls is typically no-slip for NS, which states that the 

velocity vector is zero. This results in the homogeneous Neumann BC being appropriate. 

Alternatively, a slip boundary condition requires that the velocity vector is tangent to the 

wall, hence 

    ˆ 0i iu n =       (3.25) 

Therefore 

   ( )* * *ˆ ˆ ˆ ˆ ˆi i i i i i i i i i
i

n u u n u n u n u n
x

∂φ
= − = − =

∂
   (3.26) 

which is a non-homogeneous Neumann boundary condition. This is automatically 

enforced upon forming the weak statement expression for (3.21), as developed in the next 

chapter. 

 

3.4 Pressure Poisson Equation 
 

The pressure Poisson equation for the LES theory CFD algorithm is a generalization of 

the form in [Wil93]. Starting with the divergence of  (2.67) 
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( )( )
2

2

( )

1
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ˆ 0
2

i
i

i i

i j j

i
j ij ij i

i i j j

P u
x

u u
x t x x

uP u SGS R Ar g
x x u x

δ
γ

∂
=

∂

⎛ ⎞∂ ∂∂
= − +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎧ ⎫⎡ ⎤∂∂ ∂ ∂⎪ ⎪+ − − + Θ =⎨ ⎬⎢ ⎥∂ ∂ ∂ ∂⎪ ⎪⎣ ⎦⎩ ⎭

L L

  (3.27)  

where ijSGS  stands for the sub-grid scale model. In the case of the TWS SGS, ijSGS  is 

replaced by Eqn. (2.61).  

Since the constraint theory requires only P  at time nt , (3.27) can be simplified by 

imposing the continuity constraint. Assuming that the temporal derivative commutes with 

the divergence operation, which is applicable for flow fields with smooth changes in 

time, the acceleration is solenoidal, hence 

   0i i

i i

u u
x t t x

⎛ ⎞∂ ∂∂ ∂⎛ ⎞ = =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
     (3.28) 

Similarly, for sufficient smoothness in spatial derivatives, they also commute. The 

Reynolds number, Re, is a constant, hence 

   
2 2

2

1 1 0
Re Re

i i

i j j j i

u u
x x x x x

⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂
= =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

    (3.29) 

Therefore the pressure Poisson equation for a divergence-free LES theory velocity vector 

field is 

  

( )( )
2

( )

ˆ 0
2

i
i

i
j ij ij i

i i j j

P u
x

uP u SGS R Ar g
x x x x

δ
γ

∂
=

∂

⎧ ⎫⎡ ⎤∂∂ ∂ ∂⎪ ⎪= + − − + Θ =⎨ ⎬⎢ ⎥∂ ∂ ∂ ∂⎪ ⎪⎣ ⎦⎩ ⎭

L L *

  (3.30) 
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Being an elliptic boundary value PDE, the BC for (3.30) is of non-homogeneous 

Neumann form, as derived by projecting the momentum equation onto the boundary, 

which yields 

 ( )
2 2

2

1ˆ ˆ ˆ ˆ
2 Re

j

i
i ij ij i i i i

i j

uP n SGS R n n u n
x x t x

δ
γ

⎡ ⎤ ∂∂ ∂ ∂
= + − +⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

   (3.31) 
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4. CFD Algorithm Weak Form FE Implementation 
 

Including the two Poisson PDEs generated by the continuity constraint algorithm into the 

set of LES theory PDEs, the LES state variable representation from Chapter 2.9 is 

augmented as 

   ( ) ( )
2

, 0A
A A A

k k

qq s q q
x x α
∂

= − − =
∂ ∂

L    (4.1) 

With the definitions 

    ijA
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⎪ ⎪⎪ ⎪= ⎨ ⎬
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⎪ ⎪⎩ ⎭
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δ
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⎪ ⎪⎛ ⎞∂ ∂⎪ ⎪− −⎜ ⎟∂ ∂⎪ ⎪⎝ ⎠
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    (4.3) 
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4.1 Galerkin Weak Statement Formulation 
 

The implementation of the derived LES CFD algorithm is via a finite element spatial 

discretization [Bak83, Bak05] of a Galerkin weak statement for the LES theory-identified 

PDE systems. For qα the NS state variable, any approximation continuous in space and 

time is assumed as 

  ( ) ( ) ( ) ( )
1

, ,
N

N
i i k j k

k
q x t q x t x Q tα α

=

≈ ≡ Ψ∑    (4.4) 

Similarly, for the quasi-linear harmonic PDE system (4.1) 

  ( ) ( ) ( ) ( )
1

, ,
N

N A
A i A i k j k

k
q x t q x t x Q t

=

≈ ≡ Ψ∑    (4.5) 

where the set of known functions ( )k ixΨ  is called the approximation trialspace. The 

extremization of the approximation error is obtained via forming a Galerkin weak 

statement, [Bak05], on the LES theory PDE systems as  

 ( ) ( )GWS= 0,     for 1N
jx q d Nβ α τ β

Ω
Ψ = ≤ ≤∫ L   (4.6) 

and 

  ( ) ( )GWS= 0,     for 1N
j Ax q d Nβ τ β

Ω
Ψ = ≤ ≤∫ L   (4.7) 

where Ω  symbolizes the domain of definition of the PDEs. 

Substitution of ( )NqαL  and ( )N
AqL   results in the requirement to form the following 

integrals 
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  ( ) ( )
N NN N

j j
j

qGWS q f f s d
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α
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α β τ
Ω

⎛ ⎞∂ ∂
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  ( ) A

N
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A

i i

qGWS q s d
x xβ τ

Ω

⎛ ⎞∂
= Ψ − −⎜ ⎟∂ ∂⎝ ⎠

∫    (4.9) 

Applying a Green-Gauss theorem to (4.8) and (4.9) yields 

 

( ) ( )

( ) ˆ           0

N NN N
j j

j

N

j j j

qGWS q s d f f d
t x

f f n d
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+ Ψ − =
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  (4.10a) 
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ˆ                    

N
N NA
A A

i i

N
A

i
i

qGWS q d s d
x x

q n d
x

β
β

β

τ τ

σ

Ω Ω

∂Ω

∂Ψ ∂
= − Ψ

∂ ∂

∂
− Ψ

∂

∫ ∫

∫v
    (4.10b) 

 

and the generated surface integrals are the mathematical placeholder for all natural 

boundary conditions. 

A finite element implementation of (4.10) utilizes a spatial semi-discretization hΩ  of the 

PDE domain Ω , which is the union of a set of non-overlapping sub-domains, or finite 

elements eΩ , hence 

    h
e

e
Ω ≈ Ω = Ω∪      (4.11) 

The approximation (4.4) is then formed as the union over all finite elements of 

  ( ) ( ) ( ) ( ), , , ,N h
j j j e j

e
q x t q x t q x t q x tα α α≈ ≡ = ∪    (4.12) 
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with an identical expression for ( ),N
A jq x t . For any finite element, the generic form for eq  

is 

   ( ) ( ){ } ( ){ },
T

e j k j e
q x t N Q tη≡     (4.13) 

where the row matrix { }T
kN is termed the finite element basis function containing a set of 

polynomials complete to degree k . 

Equation (2.11) is evaluated for each element of the discretization, and the resulting 

element-level expressions are then assembled into a global matrix statement of the form 

 ( ) ( ) [ ] { } ( ){ } { }MASS RES , 0N h
A

d Q
GWS q GWS q Q Q

dtα α⇒ = + =  (4.14) 

with [ ]MASS  and { }RES being global size square and column matrices, and 

{ } ( ){ }Q Q t≡  a column matrix of the state-variable approximation coefficients at the 

nodes of the mesh. The residual { }RES is a non-linear function of { }, AQ Q  and contains 

contributions from all terms in Eqn. (4.10a) except the time term. 

The remaining time derivative is then discretized using a θ -implicit, one-step algorithm, 

resulting in the algebraic statement 

 { } [ ]{ } { } ( ){ }( ) { }1 1
1 0n n n n

FQ MASS Q Q t RES RES+ +
= − + Δ θ + + θ =  (4.15) 

where 1n nt t t+ = + Δ , and 0.5 1≤ θ ≤ . 

The finite element implementation of Eqn. (4.9) directly produces an algebraic system 

  { } [ ]{ } ( )( ){ } { }0A A AFQ DIFF MASS Q S Q t= + − =    (4.16) 
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where [ ]MASS  results only from the harmonic terms in the auxiliary problems, since the 

PDE systems for φ  and P  are pure Poisson equations. 

The solution for the algebraic matrix expression (4.15) - (4.16) must be found iteratively, 

since it represents a coupled, non-linear system of equations. Following the theoretical 

Newton scheme, the iterative cycle is 

  { } { } { } { }0 0

1 1
,   

n n n n
Q Q FQ FQ

+ +
= =  

  for 0,1,2,...p = until convergence 

  { }
{ } { } { }1

1 1
1

p
p p

n n
n

RES
MASS t Q FQ

Q
θ δ +

+ +
+

⎡ ⎤∂
+ Δ = −⎢ ⎥

∂⎢ ⎥⎣ ⎦
   (4.17) 

  { } { } { }1 1

1 1 1

p p p

n n n
Q Q Qδ+ +

+ + +
= +  

For (4.16) the solution can be found directly via the matrix statement 

  [ ]{ } ( )( ){ }A ADIFF MASS Q S Q t+ =      (4.18) 

 

4.2 Taylor Weak Statement Formulation 
 
 
One of the main issues in the development of CFD algorithm is numerical stability, in 

particular for flows with large Reynolds number Re, as all CFD algorithms show an 

inability to handle the dispersive error mode solely by the use of the physical diffusion 

mechanism. This dispersion error is introduced through spatial discretization, and 

manifests itself in the appearance of mesh-scale oscillations in the velocity and 

temperature fields, see [Bak05].  
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To effectively dissipate this dispersion error mode is the central thesis of the Taylor 

Weak Statement (TWS) theory, which generates appropriate Taylor-series modifications 

to the NS PDE system, [CB95]. 

  

The original theory of the Taylor weak statement was developed based on the hyperbolic 

1-dimensional scalar advection equation [BK87]  

    q qa
t x

∂ ∂
=

∂ ∂
      (4.19) 

where a is a constant scalar. Since (4.19) describes an evolutionary process, a Taylor 

series exists of the form 

  
2 2 3 3

1
2 32 6

n n

n n n

q t q t qq q t
t t t

+ ∂ Δ ∂ Δ ∂
= + Δ + +

∂ ∂ ∂
    (4.20) 

For large Reynolds numbers and negligible source terms, the incompressible NS PDE 

system can be expressed as 

  ( ) 0j
j

j j

fq q qq A
t x t x

∂∂ ∂ ∂
= + = + =

∂ ∂ ∂ ∂
L      (4.21) 

where jA is the jacobian of the kinetic flux vector jf
q

∂
∂ . The higher order time terms in 

(4.20) can be replaced by the spatial derivatives of (4.21), e.g. 

  
2

* *
2 j j k

j k

q q qA A A
t x t x

α β
⎛ ⎞∂ ∂ ∂ ∂

= +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
      (4.22) 

with the constraint * * 1α β− = . Using the same approach, an expression for the third 

derivative in time can be found and inserted into (4.20). Substituting the new Taylor 

series into (4.19) will lead to the Taylor modified NS PDE conservation system 
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( ) ( ) * *

* *

2 3

0
2 3

m
j j k

j j

j k j k l
j k j l

t q t qq q A A A
x t x t

t q t qA A A A A
x x x x

α γ

β μ

⎡ ⎤Δ ∂ ∂ Δ ∂ ∂⎛ ⎞= − +⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞Δ ∂ ∂ Δ ∂ ∂

− + =⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

L L

   (4.23) 

Research at the University of Tennessee CFD Laboratory, [Kol00], [Bak05], [NoB89], 

has examined the influence of each Taylor series term on the ability to stabilize and 

control various discretization error modes. The dispersion error control for the NS 

momentum equations is achieved through the *β  term 

    *

2
i

j k
j k

ut u u
x x

⎛ ⎞∂Δ ∂
−β ⎜ ⎟∂ ∂⎝ ⎠

    (4.24) 

Similarly, TWS theory dispersion error control for the energy equation results from 

    *

2 j k
j k

t u u
x xΘ

⎛ ⎞Δ ∂ ∂Θ
−β ⎜ ⎟∂ ∂⎝ ⎠

    (4.25) 

Hence, the Taylor weak statement for the LES NS PDE system can be written as 

( )

( )       0
2

m
i

m i
i j k

j k

TWS u d

utu d u u d
x x

β

β β

τ

βτ τ

Ω

Ω Ω

= Ψ

⎛ ⎞∂Δ ∂
= Ψ − Ψ =⎜ ⎟∂ ∂⎝ ⎠

∫

∫ ∫

L

L
  (4.26) 

which constitutes a Galerkin weak statement written on the TS-modified NS conservation 

principle PDE system. 
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4.3 Finite Element Flux Vector Computations 
 

Finite element prediction of all flux vectors in the LES-CFD algorithm are readily created 

via Galerkin weak statements. Using the TWS beta SGS tensor ijFB  as the example, the 

parent calculus expression is   

 ( ) ( )
2Re 0

24ij ij j k ik i k jk
hFB FB u u S u u S= − + =L    (4.28) 

The Galerkin weak statement produces the following integral equation 

( )
2 2Re Re 0

24 24

ij

ij j k ik i k jk

FB d

h hFB u u S u u S d

β

β

τ

τ

Ω

Ω

Ψ =

⎛ ⎞
Ψ − − + =⎜ ⎟

⎝ ⎠

∫

∫

L

  (4.29) 

Inserting the finite element expressions for the solution and noting that the measure of the 

mesh is related to the determinant of the Jacobian of the coordinate transformation, 

[Bak05], via ( )2 4deth J= , the discrete GWSh statement on the generic FE domain is 

  

{ }{ } { }

{ } { }{ } { } ( ) { }

{ } { }{ } { } ( ) { }

1 1

1 1 1

1 1 1

Re , 4det
24

Re , 4det 0
24

e

e

e

T
e

T T T

T T T

GWS N N d FBIJ

UI UK N N N J d SIK

UJ UK N N N J d SJK

τ

τ

τ

Ω

Ω

Ω

=

−

− =

∫

∫

∫

 (4.30) 

Separating the symmetric tensor into its components 11, 12FB FB and 22FB  leads to the 

following three uncoupled statements for a 2-dimensional problem 
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{ }{ } { }

{ } { }{ } { } ( ) { }
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1 1

1 1 1

1 1 1
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 (4.31a) 
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∫
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∫

 (4.31b) 

  

{ }{ } { }
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1 1

1 1 1

1 1 1
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Re 2, 4det 2
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=

−

− =

∫

∫

∫

 (4.31c) 

where 1..2K =  is a summation index. This expression can be written in the finite element 

template form used at the UT CFD Laboratory, where each term in Eqn. (4.31) is 

replaced by a line of code consisting of six entries, i.e. a global constant, an element 

constant, nodal distributed data, metric data resulting from the coordinate transformation, 

the finite element basis matrix, and the unknown variable or source data. The integrals of 

the basis functions are expressed via entries in the fourth and fifth placeholder of the 

template form, e.g. ( )[ ] { }{ } { }1 1 1det 3000
e

T TJ B N N N dτ
Ω

= ∫  

The residuals of the Galerkin weak statements (4.31) on an element are then  
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( )( )( )( )( )( )
( )( )( )( )( ) ( )
( )( )( )( )( )( )
( )( )( )( )( ) ( )

11 , , 1, 1 0;2 3000 11

              + , , 1, 2 0;2 3000 12

              + , , 1, 1 0;2 3000 11

              + , , 1, 2 0;2 3000 12

FBRES FAMUL RENO U U B S

FAMUL RENO U U B S

FAMUL RENO U U B S

FAMUL RENO U U B S

= −

−

−

−

 (4.32a) 

 

( )( )( )( )( )( )
( )( )( )( )( )( )
( )( )( )( )( )( )
( )( )( )( )( )( )

12 , , 2, 1 0;2 3000 11

              + , , 2, 2 0;2 3000 12

              + , , 1, 1 0;2 3000 11

              + , , 1, 2 0;2 3000 22

FBRES FAMUL RENO U U B S

FAMUL RENO U U B S

FAMUL RENO U U B S

FAMUL RENO U U B S

= −

−

−

−

 (4.32b) 

 

( )( )( )( )( )( )
( )( )( )( )( )( )
( )( )( )( )( )( )
( )( )( )( )( )( )

11 , , 2, 1 0;2 3000 11

              + , , 2, 2 0;2 3000 22

              + , , 2, 1 0;2 3000 12

              + , , 2, 2 0;2 3000 22

FBRES FAMUL RENO U U B S

FAMUL RENO U U B S

FAMUL RENO U U B S

FAMUL RENO U U B S

= −

−

−

−

 (4.32c) 

where RENO is the Reynolds number, and FAMUL stands for 6
β . 

The jacobians in (4.30) are expressed as 

  ( )( )( )( )( )( )11 0;1 200FBJAC B=      (4.33a) 

  ( )( )( )( )( )( )12 0;1 200FBJAC B=      (4.33b) 

  ( )( )( )( )( )( )22 0;1 200FBJAC B=      (4.33c) 

The code will assemble those element matrices over the sum of all elements, hence 

produce three global matrix statements over the domain Ω  

  [ ]{ } { }11 1111FB FBJAC FB RES=      (4.34a) 

  [ ]{ } { }12 1212FB FBJAC FB RES=      (4.34b) 

  [ ]{ } { }22 2222FB FBJAC FB RES=      (4.34c) 
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resulting in a nodal solution vector for the TWS SGS fluxes { } { }11 ,  12FB FB  and 

{ }22FB . The other PDE systems are transferred into template form in similar ways. 

 

The iterative cycle used in the numerical parts of this dissertation project follows from 

(4.17), hence the matrix statement to be solved iteratively is approximated as  

[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]

1
JAC_PRES 0 0

2
0 JAC_U+T+PHI 0
0 0 JAC_FLUXES

_
_ 1
_ 2

                   
_
_

_

PRES
U
U

TEMP
PHI

FLUXES

RES PRES
RES U
RES U

RES TEMP
RES PHI

RES FLUXES

δ

⎧ ⎫
⎪ ⎪

⎧ ⎫⎪ ⎪⎡ ⎤ ⎪ ⎪⎪ ⎪⎪⎪ ⎪⎪⎢ ⎥
⎨⎨ ⎬⎬⎢ ⎥
⎪⎪ ⎪⎪⎢ ⎥⎣ ⎦ ⎪⎪ ⎪⎪⎩ ⎭⎪ ⎪
⎪ ⎪⎩ ⎭

⎧ ⎫
⎪ ⎪

⎡ ⎤⎪ ⎪
⎢ ⎥⎪ ⎪⎪ ⎪⎢ ⎥= − ⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎣ ⎦⎪

⎪⎩ ⎭

⎪
⎪
⎪

  (4.35) 

This iteration is called “quasi-Newton”, since the global Jacobian is decoupled into three 

major groups, namely the pressure, the velocities, temperature and constraint φ , and the 

LES theory flux vectors. The link between those groups lies through their residuals, 

which are functions of variables from all groups. 

As organized from the pressure projection theory, the pressure at time nt  is solved first as 

a function of the complete LES state variable solution at time nt , followed by the 

velocities, temperature and constraint, coupled with the flux vector solutions.  Then the 

next iteration starts through the two group iteration, until the iteration converges to a 
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certain criteria (usually order 1x10-4). Then the next time step commences with the 

pressure solution. 

A full Newton iterative scheme would couple all Jacobians, which would increase the 

degree of freedoms of the system to a level where computational memory becomes an 

issue. The selected quasi-Newton iteration strategy shows acceptable convergence and 

stability behavior, while performing the computations in a reasonable amount of time. A 

second approach possible would be to calculate the fluxes only once during a time step, 

hence the iterations would use the fluxes from the previous time step. This would 

certainly reduce CPU cycles and improve iterative convergence at the expense of 

retarding the LES flux vector influence on the flow-field solution.     

 

4.4 Accuracy and Convergence 
 

The semi-discrete approximation error for any finite element approximation hq  is 

    ( ) ( ) ( ), , ,h he t q t q t= −x x x    (4.36) 

where, since both q  and hq  are continuous, the error is also continuous. To examine the 

spatial as well as temporal influences on the approximation error, it is beneficial to 

separate it into spatial and temporal semi-discrete components, [Bak83]. In one 

dimension, the resolution is  

  ( ) ( ) ( ), , ,hj x n t e j x t j x n tσ τΔ Δ = Δ + Δ Δ    (4.37) 

with the spatial semi-discretization error 

   ( ) ( ) ( ), , ,h he j x t q x t q j x tΔ = − Δ     (4.38) 
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the temporal truncation error 

     ( ) ( ) ( ), ,h
jj x n t q j x t Q n tτ Δ Δ = Δ − Δ     (4.39) 

and the fully discrete error 

   ( ) ( ) ( ), , jj x n t q x t Q n tσ Δ Δ = − Δ     (4.40) 

For any choice of norm, the triangle identity yields 

   h he eσ τ τ= + ≤ +      (4.41) 

Examining the flux equation (2.67), it can be shown, [ORed76], [Kol00], that for a 

negligible convective flux and for the Euler explicit time integration 0θ = , the semi-

discrete approximation error expressed in Sobolev norm 1H , behaves as 

 ( )
( )

( ) ( ) ( ) ( )1 11 1 2 0k
h k

H HH
e t C h q t C t q t+ Ω ΩΩ

≤ + Δ   (4.42) 

where 1C  and 2C  are constants, h  is the measure of the mesh and tΔ  is the time step. 

In the case where the diffusion flux can be neglected, the discrete approximation error is 

described through   

 

( )
( )

( ) ( ) ( ) ( )

( ) ( )

1 11

1
0

1
1 2 0

3                  

k

k

h k
H HH

t

Ht

e t C h q t C t q t

C h q dτ τ

+

+

+

Ω ΩΩ

Ω

≤ + Δ

+ ∫
  (4.43) 

showing that 1

h

H
e  as the measure of the mesh independent of the basis degree k . 

Based on this theoretical statement, the asymptotic error estimates in n-dimensions for 

the finite element weak statement formulation can be conveniently expressed in the 

energy semi-norm as 
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 ( )
( ) ( )( ) ( ) ( ) ( )1 12

222 2 2
1 0k

fh
H HE

e t C h data C t q tγ
−

θ

Ω ΩΩ
≤ + Δ  (4.44) 

with ( )min , 1k rγ = −  for 1
Re  non-vanishing, and where k  is the order of basis degree 

and r  characterizes the smoothness of the data. This error estimate shows that a { }kN  

finite element algorithm is 2k  order accurate in space and first- or second order accurate 

in time, depending on the implicitness factor θ . 

 

The general superiority of the finite element approach has been shown repeatedly in the 

past, [Bak05], especially the error control abilities of the TWS formulation [Bak97]. This 

can be detailed by examination of dispersion error, hence the inability of any algorithm to 

resolve 2 xΔ data on a given discretization with mesh measure xΔ . Via a Fourier modal 

solution analysis of a simple transport equation, the amplitude factor solution can be 

derived, showing how much a solution is dispersed during one time step. Defining the 

signal propagation of the spectral distribution as the phase velocity gives a measure how 

accurate the solution can be propagated in one time step. 

Figure 4.1 gives a comparison between currently used commercial algorithms, and how 

much phase velocity error occurs in the vicinity of the 2 xΔ  cut-off. Specifically, for the 

3 xΔ solution component, the third order finite volume QUICK algorithm, common in 

today’s CFD packages, has a 55% error rate in its ability to propagate a solution accurate 

in time, while the TWS algorithm with linear basis functions and a γ  correction of 0.083 

only experiences 10%. 



 55

Figure 4.3 shows the amplification factor error made by these algorithms. At 3 xΔ , the 

finite difference upwind algorithm produces a 75% error, while the linear TWS with 

0.063β =  yields only 10%. 

 

A very informative verification problem is the rotating cone, where a rotated Gaussian 

distribution is advected along a circular path until it reaches its starting location. The 

analytical solution (Figure 4.3a) shows that the form and amplitude of the Gaussian is 

unchanged after one revolution. For the numerical solution using a finite difference 

Crank-Nicolson algorithm, Figure 4.3b examines that the energy formerly located in the 

Gaussian shape has been dispersed throughout the domain. The original distribution has 

almost disappeared. 

A much improved solution can be seen in Figure 4.3c, where the numerical experiment 

has been repeated using a GWS with linear finite element basis. Finally, for TWS with 

linear finite element basis and an optimal γ  , (compare Eqn. (4.23)), the solution is 

accurate to within one percent.
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5. Discussion and Results 

 
To establish the viability of the developed LES theory with newly developed TWS SGS 

model, computational experiments were conducted comparing the closure models for 

three pertinent benchmark and validation test cases. First the feasibility of the TWS beta 

term as an SGS model is examined for a turbulent duct flow problem. Examinations are 

made to connect regions of spectral content with dissipation of energy via the TWS beta 

term in those locations, compared to the Smagorinsky model. 

Second was examination of the dissipation and stabilization capabilities for a laminar 

flow large Re driven cavity problem, with solution dominated by extreme geometric BC 

singularities and using solution-adapted meshing. Finally, the LES theory is fully 

examined for an 8:1 thermal cavity validation problem, exhibiting a critical Ra for steady 

flow transition to unsteady cyclic flow with generation of a significant range of eddy 

scales for progressively larger Re.  

 

5.1 Turbulent Duct Flow 

 
 
The first computational assessment is for turbulent flow in a two-dimensional duct, using 

a non-uniform mesh of 33x25 nodes and a Reynolds number of 4.3x106. The objective is 

to examine the behavior of the Stokes, Reynolds, TWS and Smagorinsky stress tensors in 

a turbulent flow environment that creates false spectral content due to dispersion error 
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from the inflow boundary condition that has to be resolved. The main question is, how 

the TWS and Smagorinsky stress might stabilize the solution, hence add artificial 

diffusion. 

The problem domain consists of a half inch high and 3 feet long duct, necessary to ensure 

enough distance from the entrance to allow for a fully developed steady turbulent 

velocity profile. The 1:72 aspect ratio of duct height to length requires the use of distorted 

plot styles for data interpretation. The non-uniform mesh, featuring 33x25 nodes is 

pushed towards the entrance of the duct, see Figure 5.1.1. The turbulent flow CFD 

algorithm employs the k-ε turbulence closure model, which generates an adequately 

accurate steady turbulent velocity profile in the downstream reach of the duct. This is 

show in Figure 5.1.2, which validates convergence of the turbulent velocity profile for 

33x17 and 33x25 node meshing compared to turbulent boundary theory. The Y+ 

distribution of the first node of the wall, Figure 5.1.3, confirms that the k-ε algorithm 

employed is indeed accurately imposing the law of the wall boundary condition. 

The inflow boundary condition for the duct is an interpolated (simulated) turbulent 

velocity profile, the inaccuracy of which generates dispersion error, hence significant 

spectral content in the immediate downstream region (Figure 5.1.4). The boundary 

condition for the turbulent kinetic energy is zero, resulting in significant dispersion error 

peaks close to the wall (Figure 5.1.5). The BC for dissipation ε is set as vanishing 

Neumann, i.e., floating, hence resulting in the localized sharp peak shown in Figure 5.1.6. 

From these data, it is obvious that singularities induced by the inflow BC require 

numerical dissipation to maintain stability. The k-ε turbulent model by itself cannot 
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handle these instabilities, created by the dispersion error, which can be deducted from the 

plot of the turbulent Reynolds number, Figure 5.1.7. 

In this code execution, all stresses are post-processed from the computed velocity profile. 

A comparison of the laminar Stokes shear stress 12FD  with the TWS SGS stress 12FB  at 

the far downstream location 1 2.27x ft=  , Figure 5.1.8, shows that the TWS stress is two 

orders of magnitude smaller than the Stokes stress. This is due to the fact that the spectral 

content has already been dissipated that far down the duct, by orders of magnitude in the 

core flow of the duct. Figure 5.1.9 gives a comparison of the k-ε turbulent Reynolds shear 

stress 12T  and the Smagorinsky SGS shear stress 12FS . The magnitude of the Reynolds 

stress is much higher than the Smagorinsky stress. The profile of 12T  distribution clearly 

shows the classical turbulent content, while the Smagorinsky stress resolves the turbulent 

profile badly, especially close to the wall. 

The TWS SGS normal stress 11FB  is having an influence only in the core region of the 

dispersion error induced spectral content, Figure 5.1.11, and its magnitude is orders 

higher than the Stokes, Reynolds or Smagorinsky stresses (Figures 5.1.10, 5.1.12 and 

5.1.13) in this local region. It clearly dominates energy dissipation in that region, hence 

controls the dispersion error spectral content by smoothing, therefore retaining the 

stability of the system. The SGS Smagorinsky normal stress 11FS  does not have this 

ability (Figure 5.1.12). Its maxima are located at the inflow wall points, dissipating only a 

small amount of energy in the large spectral content region. 

For the shear stress component of the SGS TWS stress 12FB , it is evident that energy 

dissipation again is contained to the regions of spectral content, while it is negligible 
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elsewhere, Figure 5.1.15. Its magnitude is comparable to the Reynolds shear stress 12T , 

which shows a turbulent profile disturbed by the influence of the dispersion error created 

by the inflow boundary condition, Figure 5.1.17. The laminar Stokes shear stress 12FD  

and the SGS Smagorinsky stress 12FS  show similar behavior, Figures 5.1.14 and 5.1.16, 

with the magnitude of Smagorinsky two orders higher at the wall. It seems to have no 

influence on energy dissipation in the regions of dispersion error spectral content.  

 

In summary, it is evident that the TWS SGS stress tensor is performing well in 

dissipating energy from areas of high spectral content. Since this content is unwelcome, 

because it was created by dispersion error, the TWS SGS model seems to do well as a 

stabilization mechanism. The Smagorinsky SGS model does not seem to have a major 

influence on stability. 

 

5.2 Laminar Flow in Driven Cavity 

 

The second computational simulation is for laminar flow in a two-dimensional driven 

cavity at Reynolds number of 2000. This problem is a benchmark in that comparable 

established numerical results exist in abundance, [GGS82, Eri01]. The objective of this 

test case is to examine the behavior of the TWS beta stress tensor versus the laminar 

Stokes stress tensor, especially in the areas of apparently inadequate mesh resolution and 

around the geometric singularities.    
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The problem domain is a square cavity, enclosed on three sides by stationary walls 

(Figure 5.2.1). The top of the cavity features a sliding lid with constant velocity to the 

right. This induces a clock-wise flow in the interior of the cavity. Since the upper corners 

experience the moving lid, as well as walls with a no-slip condition, singularities are 

produced by these boundary conditions, giving this benchmark problem its unique 

character. 

To handle the singular behavior at the corners and the wall boundary layers appropriately, 

a non-uniform mesh is used which has progression ratios that move more meshing into 

the upper corners (Figure 5.2.2). The values of those mesh progression ratios are 

optimized based for an equi-distribution (see [Eri01]) of the energy norms of vorticity 

and stream-function, as summarized in Figure 5.2.3. Hence this mesh has enough 

resolution in both upper corners to handle the BC singularities. The associated velocity 

solution for this problem, created by [Eri01], is shown in Figure 5.2.4, graphed as unit 

vectors colored for speed. The solution features a central clock-wise circulating region, as 

well as two smaller secondary re-circulation bubbles in each lower corner, and a sharp 

localized recirculation near the upper left corner. 

 

This dissertation project executed the test case using the energy norm equi-distribution 

mesh parameters, Figure 5.2.2. The resultant velocity field appears visually identical to 

that in [Eri01], compare Figures 5.2.4 and 5.2.5. The associated pressure distribution 

exhibits sharp maxima in both upper corners, due to the BC singularity of the sliding lid, 

which are resolved adequately on this optimized mesh, see Figure 5.2.6. 
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Using the developed LES template, the laminar Stokes stresses tensor distributions can be 

compared with the TWS beta term stress tensor. The laminar Stokes normal stress, FD11, 

has its maxima in the regions of the BC singularities, Figure 5.2.7, as is expected. Green 

represents a null level of this tensor, which dominates the lower areas of the mesh, 

following the outskirts of the center vortex. In comparison to the Stokes normal stress the 

TWS SGS normal stress has extrema two orders higher, hence dominates the laminar 

normal stress by far, Figure 5.2.8. It shows strong dissipation of dispersion error induced 

along the lid, hence the false spectral content generated by the problem definition. 

Furthermore it generates increased dissipation in the areas of the secondary recirculation 

bubbles located in the left bottom and right top of the cavity, where the mesh appears too 

coarse to adequately resolve the transition region at the edge of the secondary 

recirculation bubbles. 

The Stokes shear stress FD12 exhibits large peaks of diffusion in both upper corners and 

along the lid, Figure 5.2.9, but its magnitude is an order smaller compared with the TWS 

SGS shear stress FB12, Figure 5.2.10. However, the TWS SGS shear stress dominates 

not at the corner singularities but along the edges of the primary vortex. 

For the Stokes normal stress FD22, Figure 5.2.11, a similar distribution can be seen as for 

FD11, hence peaks at upper corners as well as small values around the edges of the 

secondary  recirculation bubbles. The TWS SGS normal stress FB22 shows a magnitude 

two orders higher than the Stokes stress FD22, Figure 5.2.12, and contains a very 

complicated distribution of local extrema mainly in the regions of the secondary 

recirculation bubbles. This presented energy dissipation of the spectral content featured 

by the TWS SGS stresses acts as a control, which dominates the algorithm stability. 
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In summary, the Stokes stress tensor distributions are small in comparison with the TWS 

SGS stress tensor. Obviously, this quality benchmark solution is dominated by the 

dissipation mechanism due to the numerical (artificial) TWS SGS stresses, which in fact 

are dissipating false, dispersion error induced energy as generated by Re being quite 

large. Analogously, these are areas of high spectral content, comparable to eddy 

structures in turbulent flow. This mesh-scale dissipation effect is according to theory for 

LES sub-grid scale models, and proves that the TWS SGS stresses fulfill the basic 

requirements of a SGS model. Furthermore, the TWS SGS stress tensor absolutely 

stabilizes the solution process, generating a benchmark grade solution for recirculation 

bubbles in the lower corners of the cavity. Hence the TWS SGS stress tensor appears well 

suited in meeting the mathematical requirement for LES simulation embedding of the 

SGS mechanism.     

   

5.3 Thermal Cavity, Laminar to Turbulent Flow 

 

The selected validation-class simulation problem statement for the LES theory 

assessment is an 8:1 aspect ratio thermal cavity enclosure, which features a natural 

convection induced flowfield in a bounded domain. Experiments show that this problem 

transitions from steady to multi-scale unsteady above a critical Rayleigh number, 

[LeQ94]. Numerical experiments of this test case have determined the critical Rayleigh 

number to be in the vicinity of 53.1 10critRa x≈ , [CGS02]. The unsteady flow experiences 
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a vast range of features, e.g. vertical and horizontal boundary layers, corner structures, 

stratified core, shedding and multi-scale eddies, hence is considered a perfect “CFD 

laboratory” for the LES theory implementation assessment due to the enormous variety of 

spectral content, see Figure 5.3.1, as parameterized by Rayleigh number. 

The objective of this test case is to examine the behavior of the LES theory simulation as 

the flow condition is changed from laminar to turbulent flow via an increase of the 

Rayleigh number past critical, hence also the Reynolds number. Questions to be 

answered are how the magnitudes of the LES theory stress tensors are changing, 

specifically the shift in dominance through laminar/turbulent transition. Furthermore, the 

efficiency of the various SGS models on the stability of the algorithm over a Rayleigh 

number range is facilitated, to determine if SGS models do not require an additional 

numerical diffusion mechanism. Last, the issue of selected bounded domain boundary 

condition enforcement needs to be assessed. 

 

The 8:1 thermal cavity is a rectangular enclosure (Figure 5.3.2), eight length units tall and 

one length unit wide. The left wall is kept at a constant temperature hotT , while the right 

wall is kept cool at coldT . Top and bottom of the cavity are insulated. The whole enclosure 

experiences a gravitational force in the negative y-direction. Since the driving force of 

this problem is buoyancy, it is necessary to non-dimensionalize the LES theory PDE 

system with a reference velocity that is based on the temperature difference between the 

two walls. Hence rU  is defined as, [Wil93] 

    r r rU g T Lβ= Δ      (5.1) 
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where r hot coldT T TΔ = − . This definition relates the Reynolds number directly to the 

Rayleigh number, hence the transition from laminar to turbulent flow is uniquely 

controlled the Rayleigh number, see Table 5.1. The Prandtl number for all numerical 

experiments is constant at Pr 0.71= . The TWS SGS model, Eqn. (2.63) and (2.64), was 

implemented using a β and βt of 0.01, which provided dissipation in a range between 

compared SGS models. 

The boundary condition issue is handled as described in Chapter 2.9 by use of a dual-

theory implementation on a partitioned domain. The interior of the domain is equipped 

with a uniform mesh (Figure 5.3.3), on which the complete rational LES theory system is 

operating. The wall regions are admitted by changing the rational Pade filter to the box 

filter, [Joh04]. This assumption allows a non-uniform filter scale, hence mesh 

distribution, wherein only the SGS stress tensor operates.        

 

5.3.1 About Symmetries in Thermal Cavity Flow-Fields 

 

First computational experiments in the 8:1 thermal cavity generated concern that the 

perceived symmetric behavior, expected for this problem statement, was not indeed 

occurring. Specifically, laminar flow executions in the 8:1 thermal cavity case at 

63.4 10Ra x=  resulted in a slightly non-symmetric flow field beyond 80t = sec, as 

observed in the stream-function and temperature distributions in Figure 5.3.1.1. This was 

not the expected result, as the well established square cavity benchmark indeed produced 
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solutions exhibiting a symmetric behavior. Ample benchmark solutions are available for 

the square cavity, [Eri02]. 

 

Therefore, the benchmark square thermal cavity was recovered to quantify 

mathematically what had previously only been measured in the “eyeball” norm. The 

standard case uses a non-uniform 33x33 mesh, which was then extended to a 33x165 

non-uniform mesh on a 5:1 aspect ratio vacity. The algorithm chosen for this benchmark 

assessment employs the same FE CFD framework developed at the UT CFD Laboratory 

[Bak05]. The state variables members are vorticity and stream-function, calculated 

directly, which has historically been proven of excellent stability and robustness. 

The expected vorticity solution symmetry is quantified by the observation that nodally 

( ) ( ), ,i j j iΩ = Ω , therefore the existent symmetry plane is the diagonal between the 

lower left and upper right corners of the domain. The symmetric assessment variable 

definition is thus 

   ( ) ( )2 , ,i j j iτ = Ω − Ω       (5.2) 

Algorithm executions on the 33x33 mesh square cavity at Rayleigh numbers of 1x103, 

1x104 and 1x105 prove that the magnitude of 2τ  is indeed machine zero, Figures 5.3.1.2 - 

5.3.1.4. Therefore, the square cavity vorticity distribution indeed is diagonal plane 

symmetric. The next step was to progressively elongate the laminar benchmark, finally 

ending up with a 5:1 aspect ratio cavity. For the same algorithm and range of Rayleigh 

numbers, Figures 5.3.1.5 to 5.3.1.7 summarize the results. Now, the increase in Rayleigh 

number progressively increases the magnitude of 2τ , which clearly confirms that 
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vorticity symmetry accrues only for the square thermal cavity. Comparative results 

among these executions for 2τ , vorticity Ω  and the energy-norm of Ω , are summarized 

in Table 5.2. 

These results clearly validate that the unsteady lack of symmetry for the selected 8:1 

aspect ratio thermal cavity is not a theory, code implementation or mesh discretization 

error, but due to the geometric setup of the problem. The consensus explanation is that 

since buoyancy is uni-directional, i.e. not symmetric, hence is the equivalent of an 

adverse pressure gradient for flow moving downwards along the right wall, while along 

the left wall this gradient assists in moving the flow upwards. This could certainly 

destroy the apparent symmetry over time and distance of flow travel as a function of the 

wall length. These results fully confirm my confidence in a correct LES theory 

formulation and code implementation for the validation experiments on the 8:1 thermal 

cavity. 

 

5.3.2 Thermal Cavity at Ra = 3.4x105 

 

The first computational experiment on the 8:1 thermal cavity using the complete LES 

theory with the TWS SGS model was executed on a 41x281 mesh (Figure 5.3.3) at the 

slightly above-critical Rayleigh number of 3.4x106, resulting in a Reynolds number of Re 

= 680. This clearly defines an insipient unsteady, laminar flow ( critRa Ra> ), which is 

recognizable in the temperature distributions at t = 54, 194 and 294 seconds, Figure 

5.3.2.1. The distribution at t =  294 sec shows only a minor un-symmetric character. Eddy 
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structures are confined to the top and bottom section of the cavity, as well as to an 

elongated area in the center (Figure 5.3.2.2). The Stokes normal stress tensor in x-x 

direction shows magnitudes that are one to two orders larger than the Reynolds and TWS 

SGS stresses, hence the computation is dominated by the laminar physics (Figure 

5.3.2.3). The influence of the filtering, hence the LES Reynolds stress is limited to the 

recirculation regions in the top and bottom of the cavity in the LESΩ  domain mesh. For 

the shear stress in x-y direction, Figure 5.3.2.4 confirms that the Stokes stress operates at 

left and right wall boundary layer regions, as expected, again surpassing both the LES 

Reynolds and TWS SGS shear stresses in magnitude. The TWS SGS stress experiences 

its maxima at the interface between non-uniform and uniform meshing, hinting at its 

proven stabilization capabilities in regions of spectral content, while the Reynolds stress 

shows small influences only in the region of the two recirculation bubbles. 

 

In summary, the laminar insipient unsteady 8:1 thermal cavity flow is dominated by the 

Stokes stress tensor (laminar diffusion mechanism). The TWS SGS model performs in 

this Reynolds range only as algorithm stabilizer due to energy dissipation in the theory 

transition region. It assists in getting a smooth transition of state variable values over the 

interior/wall layer interface, hence enables the use of a two-model approach for boundary 

condition purposes. The LES theory Reynolds stresses due to filtering are obviously 

negligible.    

 

 

 



 68

 

5.3.3 Thermal Cavity at Ra = 3.4x106 

 

The second execution of the 8:1 thermal cavity employs a Rayleigh number of 3.4x106, 

resulting in a Reynolds number of Re = 2186. This is close to the transition Re between 

laminar and turbulent channel flow. The temperature distribution of the truly unsteady 

flow shows many more eddy structures, Figure 5.3.3.1, in particular some wall shedding 

originating in the boundary layer. The top and bottom recirculation bubbles, which were 

present at the lower Reynolds number, have stagnated, and the elongated center vortex 

has spawned two new recirculation regions in its periphery at 96.8t =  sec (Figure 

5.3.3.2). 

The normal Reynolds stress surpasses the normal Stokes stress slightly, only in the 

immediate region of the eddy structures (recirculation bubbles), see Figure 5.3.3.3. The 

normal TWS SGS stress is at null level everywhere, showing solution participation in the 

momentum balance only at the upper eddy structure. For the shear stresses (Figure 

5.3.3.4), the Stokes stress is dominating in the wall regions, as expected, while the 

Reynolds stress experiences local peaks of the same order in the central eddy regions. 

The shear component of the TWS SGS stress is at null level except locally fulfilling its 

stabilizing function in the region where the elongated vortex penetrates the two-mesh 

interface. Overall, the extrema of all stresses are comparable in order, and all have 

increased in comparison with the Ra = 3.4x105 execution by one to two orders. 
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In summary, the numerical experiment at Ra = 3.4x106, i.e. Re = 2186, shows the overall 

magnitude of all involved stresses increased over the Re=680 laminar execution. The 

Stokes stresses remain dominating the general flow, with principle importance in the 

laminar boundary layer regions at the left and right wall. The LES Reynolds stresses are 

showing principle impact in the regions of local eddy formation, while the TWS SGS 

stresses remain generally null except for stabilizing function in the two-mesh interface 

region.    

 

5.3.4 Thermal Cavity at Ra = 3.4x107 

 

The simulation of the 8:1 thermal cavity at Ra = 3.4x107 has been performed on an 

optimized 41x281 node mesh (Figure 5.3.3), featuring a non-uniform wall-layer part and 

a uniform interior domain. The Reynolds number for this execution is Re = 6850, which 

puts it in the beginning of what should be turbulent flow. 

The temperature distributions at times t = 7.03, 49.5 and 104 seconds show a very thin 

thermal boundary layer (Figure 5.3.4.1), in comparison with earlier lower Rayleigh 

number executions. Vortex shedding is reduced to a very narrow band along both walls. 

A multitude of recirculation eddies have formed, Figure 5.3.4.2, which can be seen from 

the stream-function distributions. The core eddy structures are rather uniformly 

distributed; the two recirculation bubbles at the top and bottom end of the cavity appear 

dominant. Non-symmetric flow behavior is clearly present in the stream-function plot at 

time t = 104 sec. 
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The Stokes shear stress is mainly dominant in the boundary layers on the left and right 

walls (Figure 5.3.4.3). The LES Reynolds shear stress level is null generally except for 

sharp extrema existent in each of the areas of eddy structures. The TWS SGS shear stress 

again is mainly operative in the wall-layers up to the two-mesh interface. A close-up 

view of these shear stress distributions in the upper left corner is given in Figure 5.3.4.4, 

which shows clearly that the two-model approach disables the rational LES Reynolds 

stress in the wall region with distributions around the interface between SGS non-uniform 

and LES uniform mesh being relatively smooth, with no discontinuities apparent. This 

indicates that the two-model approach is well able to admit enforcing the no-slip 

Dirichlet boundary condition at the wall while generating an adequate state variable field 

into the uniform-mesh rational LES theory domain. The solution tensor for the 

momentum equation auxiliary problem, Figure 5.3.4.5, which is computed throughout 

both the wall layer domain and the interior rational LES model domain, reveals the 

inappropriateness of non-uniform meshing for the rational LES theory formulation. The 

extrema occur in the wall regions, hence the non-uniform mesh region, and therefore 

hence would over-predict the energy transfer of the LES Reynolds stresses.    

A comparison of the TWS SGS shear stress, the Smagorinsky model shear stress and the 

SGS shear stress based on the formulation in Eqn. (2.57) is given in Figure 5.3.4.6. The 

Smagorinsky stress has the highest overall magnitude, which confirms its over-diffusive 

character as stated in [Joh04]. The SGS model based on (2.57) is two orders of magnitude 

smaller then the Smagorinsky model, while the TWS SGS model falls in between with a 

magnitude one order lower than Smagorinsky, as set by 0.01 tβ β= = . All SGS model 
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shear stresses appear to dissipate energy at the same locations, i.e., at the areas of eddy 

structures. 

Recalling the FE CFD algorithm theory on suitability of a mesh, [Bak05], examination of 

the temperature energy norm shows that the maxima and minima are within one order of 

magnitude, Figure 5.3.4.7. This is considered firm quantization of mesh adequacy, since 

an equal distribution of the energy-norm indicates an optimal mesh. The graph shows that 

the energy norm extrema lie in the wall regions, which is understandable, since the wall-

mesh has to resolve the highest gradients due to the Dirichlet boundary conditions. 

 

In summary, the Ra=3.4x107 specification seems to be still in the transitional region of 

the flow regime, with orders of magnitude of the Stokes, Reynolds and TWS SGS 

stresses similar to each other. This larger Rayleigh, hence Reynolds number solution has 

created a vast array of different-size eddies, between which the LES Reynolds stress 

seems to adequately transfer energy. The SGS stresses concentrate their energy 

dissipation at the location of spectral content, with the TWS SGS stress performing in the 

median of the examined SGS models. 

 

5.3.5 Thermal Cavity at Ra = 3.4x108 

 

The Ra = 3.4x108 execution with Re = 19932 uses the same mesh as for Ra = 3.4x107. 

The temperature distributions at t = 1.83, 9.86 and 22.8 seconds show a very thin thermal 

boundary layer (Figure 5.3.5.1). Some algorithm stability issues occurred while running 
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at these Reynolds and Rayleigh numbers on this mesh, but were contained by the code 

through reduction of the time step. The TWS SGS model, Eqn. (2.63) and (2.64), was 

implemented using a β and βt of 0.01. No extra artificial diffusion had to be added to 

stabilize this numerical experiment. The previously elongated center vortex structure at 

Ra = 3.4x107 has been replaced by two smaller bubbles, Figure 5.4.5.2.  The number of 

smaller eddies appears reduced, as visible at time t = 22.8 sec at the left wall, as well as 

the top and bottom region of the domain. This would be expected as the flow-field 

transitions to turbulent with the associated increase in spectral content dissipation.  

The laminar Stokes shear stress provides an influence only within the thin wall layer, 

Figure 5.3.5.3, see also the close-up view in Figure 5.3.5.4. The LES Reynolds shear 

stress dominates on the interior mesh, having its maxima at the locations of the most 

energy-rich eddies. The TWS SGS stress shows modest dissipation of energy in the 

regions of the vortex structures, with dominant dissipation in the wall layer, where the 

onset of shedding is apparent (see Figure 5.3.5.2, right plot, upper left wall region). 

Figure 5.3.5.5 compares the shears stresses of the TWS SGS and Smagorinsky models, as 

well as the SGS model based on Eqn. (2.57). Again, the Smagorinsky model extrema are 

almost an order larger. 

 

Driving up the Rayleigh and Reynolds numbers, hence forcing the flow to change from 

laminar to turbulent, showed that the TWS based SGS model is able to keep the CFD 

algorithm stable. The same has to be assessed for the Smagorinsky model and SGS model 

based on (2.57). 
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From the Ra = 3.4x108 solution generated using the TWS SGS model, a restart was 

performed at t = 9.6 seconds for these two numerical experiments. Using exactly the 

same input, parameters and convergence criteria, the simulations were run for 500 time 

steps. The simulation using the Smagorinsky model progressed through 500 steps to a 

final time of 15.2 seconds, with the code reducing the time step to maintain stability. The 

temperature distributions of select time points are given in Figure 5.3.5.6. Wall shedding 

remains visible at both the left and right walls at t = 15.2 sec. A large vortex structure 

close to the center is maintained, moving slightly upwards. Not many of the original 

smaller eddies are visible at the end of the simulation, Figure 5.3.5.7. 

The code execution of the LES theory implementation using (2.57) as SGS model 

reached a time of 19 seconds after 500 time steps, hence the time step was lowered 

slightly less than for the Smagorinsky simulation indicating better stability performance. 

The temperature distributions, Figure 5.3.5.8, all show wall shedding. A higher number 

of eddies are present, Figure 5.3.5.9, distributed throughout the domain. Four larger 

structures are recognizable in the right graph of Figure 5.3.5.9, with several smaller 

eddies located in between them. 

A third SGS model, based on Eqn. (2.52) was tested, but the algorithm did not converge. 

The addition of artificial diffusion through a TWS beta term did not improve stability. 

Since the model is based on a second velocity derivative, it seems logical that a finer 

mesh at the wall combined with a smaller time step might generate solution convergence. 

But a required increase in meshing, hence substantially increased computational time, 

would make this model inferior to the other tested SGS models. 
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The stream-function distribution at t = 14.7 sec. of each of those executions is compared 

in Figure 5.3.5.10. It is evident that the simulation using the Smagorinsky SGS model is 

overly diffusive in that it dissipated most small scale structures. Those small eddies are 

retained well in the TWS SGS model simulation, while the SGS model based on (5.57) 

retains some small structures, as well as a larger, elongated vortex. 

A comparison of the shear components of the SGS models at t = 14.7 seconds clearly 

compares their magnitude. The Smagorinsky shear stress 12SMAG  has the highest 

magnitude, hence again proves its overly diffusive character as stated by [Joh04]. The 

smallest magnitude is experienced by the SGS model based on Eqn. (2.57), while the 

TWS SGS shear stress lies in between, as set by 0.01 tβ β= = . 

 

In summary, the results of this section can be concluded as following. Driving the flow 

problem from laminar to turbulent decreased the importance of the Stokes stresses, as can 

be expected. The Stokes stresses are still influential in the wall layers. The LES Reynolds 

stresses gain importance the larger Re becomes, and are confined to the interior of the 

domain as implemented by the two-model simulation. The wall region flow is therefore 

driven solely by the SGS closure model. The TWS SGS stress takes responsibility for 

dissipating energy in the regions of eddy activity, as well as a stabilization mechanism. 

Based on comparison of magnitude, it is placed between the overly diffusive 

Smagorinsky model and an established SGS model used in previous rational LES theory 

implementations, [Joh04]. It dissipates energy, hence stabilizes the simulation, without 

draining to much energy, which will dampen out smaller eddy structures. All three SGS 

models proved stable for the largest Re cavity test, without requiring an additional 
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artificial diffusion mechanism. The problem of no-slip Dirichlet boundary conditions was 

solved by implementation of a two-theory approach. Examination of close-ups of the 

Reynolds stress showed that no visible discontinuities occurred at this interface, nor did 

they occur in the temperature and stream-function distributions.             
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6. Conclusions and Recommendations 

 

6.1 Conclusions   

 

In this dissertation project an LES theory for the 3-dimensional, incompressible, unsteady 

Navier-Stokes equations, focused on prediction of mixed convections flows, was 

developed and implemented into computable form. The rational LES theory, as 

developed in the literature, was extended to the heat and mass transport equation systems. 

Boundary conditions appropriate to analysis of flows in bounded domain for this LES 

theory were developed, leading to a two-theory approach successfully implemented in the 

computational part of this project. A candidate SGS model was developed based on TWS 

stability theory developments reported in the literature and its appropriateness to dissipate 

energy assessed. Comparisons with three other SGS models were performed and showed 

that the developed TWS theory SGS model is able to acceptably (according to theory) 

dissipate mechanical energy at the sub-grid scale of eddy structures. It also proved to 

have positive stabilization effects on the algorithm, without the need of additional 

artificial diffusion mechanisms. Computational experiments were performed for two 

benchmark and one validation case, confirming that the TWS SGS model is less diffusive 

than the Smagorinsky model. Conversely, for the thermal cavity validation case, it was 

set to be more diffusive than the comparable appropriate order SGS model. It appears to 

be a valuable addition to the current range of LES sub-grid scale models. 
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6.2 Recommendations   

 

This newly developed LES theory provides ample research opportunity. For the thermal 

cavity experiments, the TWS SGS model was implemented using a β and βt of 0.01. 

Those values were chosen arbitrarily to place the dissipation ability of the TWS SGS 

model in between those of the established models examined in this project. Therefore it is 

imperative, in the next step, to match the exact values of β and βt for a multitude of flow 

problems by comparison with experimental data. A first possible flow problem to be 

examined could be the step-wall diffuser, for which experimental data over a wide range 

of Re are available. This problem is in particular interesting, since a distinct recirculation 

bubble downstream of the step is present. Experimental data defines this bubble in size, 

form and location, hence comparison with numerical simulation of the developed LES 

theory is simple and more appropriate than questionable comparisons of time-averaged 

velocity distributions. 

Furthermore it is of interest to examine the thickness of the non-uniform wall-layer 

domain as influenced by the implemented filter width δ .  It is desirable to minimize the 

non-uniform domain region at the walls for mesh reduction purposes, while the boundary 

layer profile still needs to be correct.    
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Table 2.1 Filter functions and transfer functions 

Name Filter function Transfer function 
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Table 5.1 Compilation of temperature difference between hot and cold wall, Rayleigh, 
Reynolds, Grashof and Archimedes numbers for the thermal cavity test case 
 

Ra ΔT (°F) Re Gr Ar 
3.4x105 0.21666 680 4.78x105 1 
3.4x106 2.16666 2186 4.78x106 1 
3.4x107 21.6666 6851 4.69x107 1 
3.4x108 216.666 19932 3.97x108 1 



 87

 
 
 
 
 
 
Table 5.2 Comparison of symmetry between square cavity and 5:1 aspect ratio thermal 
cavity using Omega-Psi algorithm  
 

Square cavity (33x33 nodes) 

Ra 2τ  
Omega Omega E-norm 

1x103 0 6x10-3 2x10-4 

1x104 0 2x10-2 2x10-2 

1x105 1x10-13 9x10-2 2x100 

5:1 aspect ratio cavity (33x165 nodes) 

Ra 2τ  
Omega Omega E-norm 

1x103 2x10-8 7x10-3 - 

1x104 1x10-7 4x10-2 - 

1x105 8x10-7 1x10-1 - 
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Figures 
 
 
 
 
 
 
 
 

 
Figure 2.1  Filter functions in physical space; solid line: Gaussian filter, dashed line: 

box filter, dashed-dotted line: sharp spectral filter 
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Figure 2.2  Filter functions in wave number space; solid line: Gaussian filter, dashed 
line: box filter, dashed-dotted line: sharp spectral filter 
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Figure 2.3.  Second order Taylor series approximation for the Gaussian filter 
 
 
 
 

 
 

Figure 2.4.  Second order Pade approximation for the Gaussian filter 
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Figure 2.5  Filtering at the wall 
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Figure 4.1  Phase velocity error distribution for a range of CFD algorithm 
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Figure 4.2  Amplification factor error distribution for a range of CFD algorithm 
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Figure 4.3a Analytical solution for rotating cone problem 
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Figure 4.3b Crank-Nicolson solution for rotating cone problem 
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Figure 4.3c GWS solution for rotating cone problem 
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Figure 4.3d TWS solution for rotating cone problem 
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Turbulent Duct 
 
 
 
 

 
Figure 5.1.1 33x25 non-uniform meshing for turbulent duct flow case; distorted 

plot; original dimensions are 0.5 inch height to 3 feet length
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Figure 5.1.2 Validation of turbulent duct velocity profile along centerline of duct 

versus turbulent boundary layer theory 
 
 

 
Figure 5.1.3 Y+ at first node of the wall distribution along the length of the duct 
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Figure 5.1.4. Axial-velocity profile for turbulent duct flow 

 
 
 

 
Figure 5.1.5. Turbulent duct turbulence kinetic energy 
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Figure 5.1.6. Turbulent duct dissipation rate 

 
 
 

 
Figure 5.1.7. Turbulent duct turbulent Reynolds number 
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Figure 5.1.8. Comparison of Stokes shear stress FD12 and TWS shear stress FB12 

 
 

 
Figure 5.1.9. Comparison of Smagorinsky FS12 and Reynolds shear stresses T12 
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Figure 5.1.10. Laminar diffusion flux 
vector component FD11 

 
Figure 5.1.11. Modified TWS flux 
vector component FB11 

Figure 5.1.12. Smagorinsky flux 
vector component FS11 

 
Figure 5.1.13. Reynolds stress tensor 
component T11 
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Figure 5.1.14. Laminar diffusion flux 
vector component FD12 

 
Figure 5.1.15. Modified TWS flux 
vector component FB12 

Figure 5.1.16. Smagorinsky flux 
vector component FS12 

 
Figure 5.1.17. Reynolds stress tensor 
component T12 
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Driven Cavity 

 

 
Figure 5.2.1 Driven cavity setup 

 
 
 

 
Figure 5.2.2 Optimized meshing for Re = 2000 laminar execution 
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Figure 5.2.3 Energy norm comparison versus mesh progression ratio for driven 

cavity at Re = 2000 
 
 

 
Figure 5.2.4 Reference solution by [Eri01], showing the velocity field of the laminar 
driven cavity for Re = 2000 on an optimized mesh, featuring TWS beta stabilization 



 107

 
 

 
Figure 5.2.5. Velocity vector distribution 

 

 
Figure 5.2.6. Pressure distribution 
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Figure 5.2.7. Laminar diffusion flux vector component FD11 

 
 

 
Figure 5.2.8. Modified TWS flux vector component FB11 
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Figure 5.2.9. Laminar diffusion flux vector component FD12 

 
 

 
Figure 5.2.10. Modified TWS flux vector component FB12 
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Figure 5.2.11. Laminar diffusion flux vector component FD22 

 
 

 
Figure 5.2.12. Modified TWS flux vector component FB22 
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Thermal Cavity 
 

 
 
 
 

 
 
Figure 5.3.1 Comparison of stream function on an 8x1 thermal cavity at Ra = 1.0E5 
(left), 1.0E6 (middle) and 3.4E6 (right) 
 



 112

 
 

 
Figure 5.3.2  8:1 thermal cavity problem  
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Figure 5.3.3  8:1 ration non-uniform mesh featuring 41x281 nodes. This figure 

shows the upper 12.5% of the mesh
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Figure 5.3.1.1 Un-symmetric stream-function (left) and temperature (right) 

distribution at t = 88 sec for a laminar LES algorithm computation using TWS SGS 
model, Re = 2186, Ra = 3.4E6 
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Figure 5.3.1.2 Vorticity (upper) and symmetry variable TAU2 (lower) distribution 
for a laminar, square thermal cavity at Ra = 1E3 
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Figure 5.3.1.3 Vorticity (upper) and symmetry variable TAU2 (lower) distribution 

for a laminar, square thermal cavity at Ra = 1E4 
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Figure 5.3.1.4 Vorticity (upper) and symmetry variable TAU2 (lower) distribution 

for a laminar, square thermal cavity at Ra = 1E5 
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Figure 5.3.1.5 Vorticity (left) and symmetry variable TAU2 (right) distribution for a 

laminar, 5:1 aspect ratio, thermal cavity at Ra = 1E3 
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Figure 5.3.1.6 Vorticity (left) and symmetry variable TAU2 (right) distribution for a 

laminar, 5:1 aspect ratio, thermal cavity at Ra = 1E4 
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Figure 5.3.1.7 Vorticity (left) and symmetry variable TAU2 (right) distribution for a 

laminar, 5:1 aspect ratio, thermal cavity at Ra = 1E5 
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Figure 5.3.2.1 Temperature distribution at t = 54, 194 and 294 sec for a laminar flow 

LES algorithm computation using TWS SGS model, Ra = 3.4xE5, Re = 680 
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Figure 5.3.2.2 Stream-function distribution at t = 54, 194 and 294 sec for a laminar 

flow LES algorithm computation using TWS SGS model, Ra = 3.4xE5, Re = 680 
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Figure 5.3.2.3 Comparison of Stokes (STOKES11), Reynolds (R11) and TWS SGS 

(TWS11) normal stresses for a laminar flow LES algorithm computation using TWS 
SGS model, Ra = 3.4xE5, Re = 680 at t = 296 sec.
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Figure 5.3.2.4 Comparison of Stokes (STOKES12), Reynolds (R12) and TWS SGS 
(TWS12) shear stresses for a laminar flow LES algorithm computation using TWS 

SGS model, Ra = 3.4xE5, Re = 680 at t = 296 sec. 
 
 



 125

 
 

 
Figure 5.3.3.1 Temperature distribution at t = 11.5, 49.8 and 96.8 sec for the rational 
LES algorithm computation using TWS SGS model, Ra = 3.4xE6, transitional Re = 

2186 
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Figure 5.3.3.2 Stream-function distribution at t = 11.5, 49.8 and 96.8 sec for the 

rational LES algorithm computation using TWS SGS model, Ra = 3.4xE6, 
transitional Re = 2186 
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Figure 5.3.3.3 Comparison of Stokes (STOKES11), Reynolds (R11) and TWS SGS 
(TWS11) normal stresses for a transitional flow LES algorithm computation using 

TWS SGS model, Ra = 3.4xE6, Re = 2186 at t = 96.8 sec. 
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Figure 5.3.3.4 Comparison of Stokes (STOKES12), Reynolds (R12) and TWS SGS 
(TWS12) shear stresses for a laminar flow LES algorithm computation using TWS 

SGS model, Ra = 3.4xE6, Re = 2186 at t = 96.8 sec. 
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Figure 5.3.4.1 Temperature distribution at t = 7.03, 49.5 and 104 sec for a LES 

algorithm computation using TWS SGS model, Ra = 3.4xE7, Re = 6850.  
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Figure 5.3.4.2 Stream-function distribution at t = 7.03, 49.5 and 104 sec for a LES 

algorithm computation using TWS SGS model, Ra = 3.4xE7, Re = 6850 
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Figure 5.3.4.3 Comparison of Stokes (STOKES12), Reynolds (R12) and TWS SGS 
(TWS12) shear stresses for a LES algorithm computation using TWS SGS model, 

Ra = 3.4xE7, Re = 6850 at t = 104 sec 
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Figure 5.3.4.4 Comparison of Stokes (STOKES12), Reynolds (R12) and TWS SGS 
(TWS12) shear stresses for a transitional flow LES algorithm computation using 

TWS SGS model, Ra = 3.4xE7, Re = 6850 at t = 104 sec; close-up at upper left 
corner 
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Figure 5.3.4.5 Auxiliary variable tensor of the momentum equations, RS11, RS12 
and RS22 for a LES algorithm computation using TWS SGS model, Ra = 3.4xE7, 

Re = 6850 at t = 104 sec 
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Figure 5.3.4.6 Comparison of shear TWS SGS stress (TWS12), Smagorinsky 

(SMAG12) and SGS stress based on Eqn. (2.57), (SGS12), for a transitional flow 
LES algorithm computation using TWS SGS model, Ra = 3.4xE7, Re = 6850 at t = 

104 sec. 
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Figure 5.3.4.7 Energy norm based on temperature for a rational LES algorithm 

computation using TWS SGS model, Ra = 3.4xE7, Re = 6850 at t = 104 sec. 
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Figure 5.3.5.1 Temperature distribution at t = 1.83, 9.86 and 22.8 sec for a turbulent 
flow LES algorithm computation using TWS SGS model, Ra = 3.4xE8, Re = 19932. 
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Figure 5.3.5.2 Stream-function distribution at t = 1.83, 9.86 and 22.8 sec for a 

rational LES algorithm computation using TWS SGS model, Ra = 3.4xE8, Re = 
19932 
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Figure 5.3.5.3 Comparison of Stokes (STOKES12), Reynolds (R12) and TWS SGS 

(TWS12) shear stresses for a turbulent flow LES algorithm computation using TWS 
SGS model, Ra = 3.4xE8, Re = 19932 at t = 22.8 sec 
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Figure 5.3.5.4 Comparison of Stokes (STOKES12), Reynolds (R12) and TWS SGS 

(TWS12) shear stresses for a turbulent flow LES algorithm computation using TWS 
SGS model, Ra = 3.4xE8, Re = 19932 at t = 22.8 sec; close-up of upper left corner of 

domain 
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Figure 5.3.5.5 Comparison of shear TWS SGS stress (TWS12), Smagorinsky 
(SMAG12) and SGS stress based on Eqn. (2.57), (SGS12), for a rational LES 

algorithm computation using TWS SGS model, Ra = 3.4xE8, Re = 19932 at t = 22.8 
sec. 
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Figure 5.3.5.6 Temperature distribution at t = 9.87, 12.7 and 15.7 sec for a turbulent 
flow LES algorithm computation using Smagorinsky SGS model, Ra = 3.4xE8, Re = 

19932. This execution is a continuation of the TWS result at t = 9.6 for the same 
Rayleigh number 
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Figure 5.3.5.7 Stream-function distribution at t = 9.87, 12.7 and 15.7 sec for a 

turbulent flow LES algorithm computation using Smagorinsky SGS model, Ra = 
3.4xE8, Re = 19932. This execution is a continuation of the TWS result at t = 9.6 for 

the same Rayleigh number 
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Figure 5.3.5.8 Temperature distribution at t = 10.4, 15.6 and 19 sec for a turbulent 

flow LES algorithm computation using SGS model based on (2.57), Ra = 3.4xE8, Re 
= 19932. This execution is a continuation of the TWS result at t = 9.6 for the same 

Rayleigh number  
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Figure 5.3.5.9 Stream-function comparison at t = 14.7, 15.6 for turbulent flow LES 
algorithm computations using TWS, Smagorinsky and SGS model based on (2.57), 
Ra = 3.4xE8, Re = 19932. This execution is a continuation of the TWS result at t = 

9.6 for the same Rayleigh number  
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Figure 5.3.5.10 Comparison of stream-function distributions at t = 14.7 sec for 

turbulent flow LES algorithm computations using the TWS, Smagorinsky and SGS 
model based on (2.57), Ra = 3.4xE8, Re = 19932 
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Figure 5.3.5.11 Comparison of driving SGS shear stress distribution at t = 14.7 sec 
for turbulent flow LES algorithm computations using the TWS, Smagorinsky and 

SGS model based on (2.57), Ra = 3.4xE8, Re = 19932 
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Figure 5.3.5.12 Comparison of temperature energy norm distribution at t = 14.7 sec 
for turbulent flow LES algorithm computations using the TWS, Smagorinsky and 

SGS model based on (2.57), Ra = 3.4xE8, Re = 19932 
 
 
 
 



 148

Code template 
 
##### **** temp.les **** {PRES} {U1 U2 TEMP PHI} {FLUXES} {OMGA} {PSI} 
{NORMS} 
INTEGRATION FACTORS 
   INITIAL_TIME 
   FINAL_TIME 
   PROBLEM_CONVERGENCE_CRITERIA 
   MAXIMUM_CHANGE_IN_Q_(DQ) 
   INITIAL_TIME_STEP 
   TIME_STEP_MULTIPLIER 
   MAXIMUM_TIME_STEP 
   CRITERIA_TO_RAISE_MAX_TIME_STEP 
   MAXIMUM_NUMBER_OF_STEPS 
   MAXIMUM_NUMBER_OF_ITERATIONS_PER_STEP 
   ITERATION_CONVERGENCE_CRITERIA 
   THETA_IMPLICITNESS_FACTOR 
   CONVERGENCE_VARIABLE 
 
TRANSFORMATION ARRAYS 
      ETKJ      1. 
      DETJ      1 
#      DETE      0. 
 
BOUNDARY CONDITIONS 
          U1 U2 TEMP PHI PRES OMGA PSI    # ORDER 
  FLUX     3  0  0  0  0  0  0     # CONVECTION HEAT FLUX 
  HFLUX    4  0  0  0  0  0  0     # HEAT FLUX 
  RFLUX    5  0  0  0  0  0  0     # RADIATION HEAT FLUX 
  HRFLX    6  0  0  0  0  0  0     # RADIATION HEAT FLUX 
  INLT_P   3  0  0  0  0  0  0     # INLET 
  WALL_SL  4  0  0  0  0  0  0     # SLIP WALL 
  DIRI_U   D  0  0  0  0  0  0     # DIRICHLET U 
  DIRI_V   0  D  0  0  0  0  0     # DIRICHLET V 
  WALL_NS  D  D  0  0  0  0  D     # NO SLIP WALL 
  DIRI_T   0  0  D  0  0  0  0     # WALL TEMPERATURE 
  DIRI_PHI 0  0  0  D  0  0  0     # THROUGHFLOW PHI 
  DIRI_P   0  0  0  0  D  0  0     # THROUGHFLOW PRESSURE 
  DIRI_OMG 0  0  0  0  0  D  0     # DIRICHLET OMGA 
  DIRI_PSI 0  0  0  0  0  0  D     # DIRICHLET PSI 
  BLANK    D  D  D  D  D  D  D     # BLANK REGION 
 
TITLE 
   PHI ALGORITHM,  DELSQ PRESSURE SOLVE 
 
RESIDUALS 
  PRES   2   #  VARBL, SET NO.,  --- SPATIAL  SET (PRES) 
 ()(U1)(EPMN)(11;-1)(B3011)(U1) 
+()(U2)(EPMN)(12;-1)(B3011)(U1) 
+()(U1)(EPMN)(21;-1)(B3011)(U2) 
+()(U2)(EPMN)(22;-1)(B3011)(U2) 
+()(U1)(EPMN)(13;-1)(B3012)(U1) 
+()(U2)(EPMN)(14;-1)(B3012)(U1) 
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+()(U1)(EPMN)(23;-1)(B3012)(U2) 
+()(U2)(EPMN)(24;-1)(B3012)(U2) 
+()(U1)(EPMN)(31;-1)(B3021)(U1) 
+()(U2)(EPMN)(32;-1)(B3021)(U1) 
+()(U1)(EPMN)(41;-1)(B3021)(U2) 
+()(U2)(EPMN)(42;-1)(B3021)(U2) 
+()(U1)(EPMN)(33;-1)(B3022)(U1) 
+()(U2)(EPMN)(34;-1)(B3022)(U1) 
+()(U1)(EPMN)(43;-1)(B3022)(U2) 
+()(U2)(EPMN)(44;-1)(B3022)(U2) 
+(-)()()(11;-1)(B211)(FB11) 
+(-)()()(13;-1)(B212)(FB11) 
+(-)()()(31;-1)(B221)(FB11) 
+(-)()()(33;-1)(B222)(FB11) 
+(-)()()(12;-1)(B211)(FB12) 
+(-)()()(14;-1)(B212)(FB12) 
+(-)()()(32;-1)(B221)(FB12) 
+(-)()()(34;-1)(B222)(FB12) 
+(-)()()(21;-1)(B211)(FB12) 
+(-)()()(23;-1)(B212)(FB12) 
+(-)()()(41;-1)(B221)(FB12) 
+(-)()()(43;-1)(B222)(FB12) 
+(-)()()(22;-1)(B211)(FB22) 
+(-)()()(24;-1)(B212)(FB22) 
+(-)()()(42;-1)(B221)(FB22) 
+(-)()()(44;-1)(B222)(FB22) 
+(-,FLAG1)()()(11;-1)(B211)(FF11) 
+(-,FLAG1)()()(13;-1)(B212)(FF11) 
+(-,FLAG1)()()(31;-1)(B221)(FF11) 
+(-,FLAG1)()()(33;-1)(B222)(FF11) 
+(-,FLAG1)()()(12;-1)(B211)(FF12) 
+(-,FLAG1)()()(14;-1)(B212)(FF12) 
+(-,FLAG1)()()(32;-1)(B221)(FF12) 
+(-,FLAG1)()()(34;-1)(B222)(FF12) 
+(-,FLAG1)()()(21;-1)(B211)(FF12) 
+(-,FLAG1)()()(23;-1)(B212)(FF12) 
+(-,FLAG1)()()(41;-1)(B221)(FF12) 
+(-,FLAG1)()()(43;-1)(B222)(FF12) 
+(-,FLAG1)()()(22;-1)(B211)(FF22) 
+(-,FLAG1)()()(24;-1)(B212)(FF22) 
+(-,FLAG1)()()(42;-1)(B221)(FF22) 
+(-,FLAG1)()()(44;-1)(B222)(FF22) 
+(-,GRSH,RE2I)()()(2;0)(B210)(TEMP) 
+(-,GRSH,RE2I)()()(4;0)(B220)(TEMP) 
  PRES   6   #  VARBL, SET NO.,  --- BOUNDARY  SET (PRES) 
 (REI)()(EPMN,RET)(0;-1)(A3011)(U1) 
#()(U1)(EPMN)(11;-1)(B3011R)(U1) 
  PRES   7   #  VARBL, SET NO.,  --- BOUNDARY  SET (PRES) 
 (-,REI)()(EPMN,RET)(0;-1)(A3011)(U1) 
  PRES   8   #  VARBL, SET NO.,  --- BOUNDARY  SET (PRES) 
 (TWO,REI)()(EPMN,RET)(0;0)(A3001)(U1) 
  PRES   9   #  VARBL, SET NO.,  --- BOUNDARY  SET (PRES) 
 (-,TWO,REI)()(EPMN,RET)(0;0)(A3001)(U1) 
 
JACOBIANS 
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  PRES PRES  2  1  #  VARBL, VARDIF, SET, ALL DIRECTIONS 
 ()()(EPMN)(1122;-1)(B3011)() 
+()()(EPMN)(3344;-1)(B3022)() 
+()()(EPMN)(1324;-1)(B3021)() 
+()()(EPMN)(1324;-1)(B3012)() 
 
GROUP FREQUENCY 
     -1  
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE 
     PHI CONSTRAINT INS GWS ALGORITHM, 2D, FULL NEWTON JACOBIAN 
(12/21/99) 
  
RESIDUALS 
  U1   1    #  VARBL, SET NO.,  --- TEMPORAL SET (U1) 
 ()()()(0;1)(B200)(-U1) 
+()()()(1;0)(B201)(PHI) 
+()()()(3;0)(B202)(PHI) 
+()()()(1;0)(B201)(SPHI) 
+()()()(3;0)(B202)(SPHI) 
  U1   2    #  VARBL, SET NO.,  --- SPATIAL  SET (U1) 
 ()()(U1+U2)(1020;0)(B3001)(U1) 
+()()(U1+U2)(3040;0)(B3002)(U1) 
+()()()(1;0)(B201)(PRES) 
+()()()(3;0)(B202)(PRES) 
+(REI)()()(1122;-1)(B211)(U1) 
+(REI)()()(3344;-1)(B222)(U1) 
+(REI)()()(1324;-1)(B221)(U1) 
+(REI)()()(1324;-1)(B212)(U1) 
+(-)()()(1;0)(B201)(FB11) 
+(-)()()(3;0)(B202)(FB11) 
+(-)()()(2;0)(B201)(FB12) 
+(-)()()(4;0)(B202)(FB12) 
#+(-)()()(1;0)(B201)(FS11) 
#+(-)()()(3;0)(B202)(FS11) 
#+(-)()()(2;0)(B201)(FS12) 
#+(-)()()(4;0)(B202)(FS12) 
#+(-)()()(1;0)(B201)(FL11) 
#+(-)()()(3;0)(B202)(FL11) 
#+(-)()()(2;0)(B201)(FL12) 
#+(-)()()(4;0)(B202)(FL12) 
#+(-)()()(1;0)(B201)(FI11) 
#+(-)()()(3;0)(B202)(FI11) 
#+(-)()()(2;0)(B201)(FI12) 
#+(-)()()(4;0)(B202)(FI12) 
+(-,FLAG1)()()(1;0)(B201)(FF11) 
+(-,FLAG1)()()(3;0)(B202)(FF11) 
+(-,FLAG1)()()(2;0)(B201)(FF12) 
+(-,FLAG1)()()(4;0)(B202)(FF12) 
+(BETA,HT)()(U1,U1)(11;-1.0)(B3011)(U1) 



 151

+(BETA,HT)()(U1,U2)(12;-1.0)(B3011)(U1) 
+(BETA,HT)()(U1,U2)(21;-1.0)(B3011)(U1) 
+(BETA,HT)()(U2,U2)(22;-1.0)(B3011)(U1) 
+(BETA,HT)()(U1,U1)(13;-1.0)(B3012)(U1) 
+(BETA,HT)()(U1,U2)(14;-1.0)(B3012)(U1) 
+(BETA,HT)()(U1,U2)(23;-1.0)(B3012)(U1) 
+(BETA,HT)()(U2,U2)(24;-1.0)(B3012)(U1) 
+(BETA,HT)()(U1,U1)(31;-1.0)(B3021)(U1) 
+(BETA,HT)()(U1,U2)(32;-1.0)(B3021)(U1) 
+(BETA,HT)()(U1,U2)(41;-1.0)(B3021)(U1) 
+(BETA,HT)()(U2,U2)(42;-1.0)(B3021)(U1) 
+(BETA,HT)()(U1,U1)(33;-1.0)(B3022)(U1) 
+(BETA,HT)()(U1,U2)(34;-1.0)(B3022)(U1) 
+(BETA,HT)()(U1,U2)(43;-1.0)(B3022)(U1) 
+(BETA,HT)()(U2,U2)(44;-1.0)(B3022)(U1) 
 
  U2   1    #  VARBL, SET NO.,  --- TEMPORAL SET (U2) 
 ()()()(0;1)(B200)(-U2) 
+()()()(2;0)(B201)(PHI) 
+()()()(4;0)(B202)(PHI) 
+()()()(2;0)(B201)(SPHI) 
+()()()(4;0)(B202)(SPHI) 
  U2   2   #  VARBL, SET NO.,  --- SPATIAL  SET (U2) 
 ()()(U1+U2)(1020;0)(B3001)(U2) 
+()()(U1+U2)(3040;0)(B3002)(U2) 
+()()()(2;0)(B201)(PRES) 
+()()()(4;0)(B202)(PRES) 
+(REI)()()(1122;-1)(B211)(U2) 
+(REI)()()(3344;-1)(B222)(U2) 
+(REI)()()(1324;-1)(B221)(U2) 
+(REI)()()(1324;-1)(B212)(U2) 
+(-)()()(1;0)(B201)(FB12) 
+(-)()()(3;0)(B202)(FB12) 
+(-)()()(2;0)(B201)(FB22) 
+(-)()()(4;0)(B202)(FB22) 
#+(-)()()(1;0)(B201)(FS12) 
#+(-)()()(3;0)(B202)(FS12) 
#+(-)()()(2;0)(B201)(FS22) 
#+(-)()()(4;0)(B202)(FS22) 
#+(-)()()(1;0)(B201)(FL12) 
#+(-)()()(3;0)(B202)(FL12) 
#+(-)()()(2;0)(B201)(FL22) 
#+(-)()()(4;0)(B202)(FL22) 
#+(-)()()(1;0)(B201)(FI12) 
#+(-)()()(3;0)(B202)(FI12) 
#+(-)()()(2;0)(B201)(FI22) 
#+(-)()()(4;0)(B202)(FI22) 
+(-,FLAG1)()()(1;0)(B201)(FF12) 
+(-,FLAG1)()()(3;0)(B202)(FF12) 
+(-,FLAG1)()()(2;0)(B201)(FF22) 
+(-,FLAG1)()()(4;0)(B202)(FF22) 
+(BETA,HT)()(U1,U1)(11;-1.0)(B3011)(U2) 
+(BETA,HT)()(U1,U2)(12;-1.0)(B3011)(U2) 
+(BETA,HT)()(U1,U2)(21;-1.0)(B3011)(U2) 
+(BETA,HT)()(U2,U2)(22;-1.0)(B3011)(U2) 
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+(BETA,HT)()(U1,U1)(13;-1.0)(B3012)(U2) 
+(BETA,HT)()(U1,U2)(14;-1.0)(B3012)(U2) 
+(BETA,HT)()(U1,U2)(23;-1.0)(B3012)(U2) 
+(BETA,HT)()(U2,U2)(24;-1.0)(B3012)(U2) 
+(BETA,HT)()(U1,U1)(31;-1.0)(B3021)(U2) 
+(BETA,HT)()(U1,U2)(32;-1.0)(B3021)(U2) 
+(BETA,HT)()(U1,U2)(41;-1.0)(B3021)(U2) 
+(BETA,HT)()(U2,U2)(42;-1.0)(B3021)(U2) 
+(BETA,HT)()(U1,U1)(33;-1.0)(B3022)(U2) 
+(BETA,HT)()(U1,U2)(34;-1.0)(B3022)(U2) 
+(BETA,HT)()(U1,U2)(43;-1.0)(B3022)(U2) 
+(BETA,HT)()(U2,U2)(44;-1.0)(B3022)(U2) 
+(-,GRSH,RE2I)()()(0;1)(B200)(TEMP) 
 
  TEMP   1    #  VARBL, SET NO.,  --- TEMPORAL SET (TEMP) 
 ()()()(0;1)(B200)(-TEMP) 
  TEMP   2   #  VARBL, SET NO.,  --- SPATIAL  SET (TEMP) 
 ()()(U1+U2)(1020;0)(B3001)(TEMP) 
+()()(U1+U2)(3040;0)(B3002)(TEMP) 
+(PEI)()()(1122;-1)(B211)(TEMP) 
+(PEI)()()(3344;-1)(B222)(TEMP) 
+(PEI)()()(1324;-1)(B221)(TEMP) 
+(PEI)()()(1324;-1)(B212)(TEMP) 
#+(-)()()(0;1)(B200)(SRCT) 
+(-)()()(1;0)(B201)(TB1) 
+(-)()()(3;0)(B202)(TB1) 
+(-)()()(2;0)(B201)(TB2) 
+(-)()()(4;0)(B202)(TB2) 
+(-,FLAG1)()()(1;0)(B201)(TF1) 
+(-,FLAG1)()()(3;0)(B202)(TF1) 
+(-,FLAG1)()()(2;0)(B201)(TF2) 
+(-,FLAG1)()()(4;0)(B202)(TF2) 
+(BETAT,HT)()(U1,U1)(11;-1.0)(B3011)(TEMP) 
+(BETAT,HT)()(U1,U2)(12;-1.0)(B3011)(TEMP) 
+(BETAT,HT)()(U1,U2)(21;-1.0)(B3011)(TEMP) 
+(BETAT,HT)()(U2,U2)(22;-1.0)(B3011)(TEMP) 
+(BETAT,HT)()(U1,U1)(13;-1.0)(B3012)(TEMP) 
+(BETAT,HT)()(U1,U2)(14;-1.0)(B3012)(TEMP) 
+(BETAT,HT)()(U1,U2)(23;-1.0)(B3012)(TEMP) 
+(BETAT,HT)()(U2,U2)(24;-1.0)(B3012)(TEMP) 
+(BETAT,HT)()(U1,U1)(31;-1.0)(B3021)(TEMP) 
+(BETAT,HT)()(U1,U2)(32;-1.0)(B3021)(TEMP) 
+(BETAT,HT)()(U1,U2)(41;-1.0)(B3021)(TEMP) 
+(BETAT,HT)()(U2,U2)(42;-1.0)(B3021)(TEMP) 
+(BETAT,HT)()(U1,U1)(33;-1.0)(B3022)(TEMP) 
+(BETAT,HT)()(U1,U2)(34;-1.0)(B3022)(TEMP) 
+(BETAT,HT)()(U1,U2)(43;-1.0)(B3022)(TEMP) 
+(BETAT,HT)()(U2,U2)(44;-1.0)(B3022)(TEMP) 
  TEMP   3   #  VARBL, SET NO.,  --- BOUNDARY SET (TEMP) 
 ()(NUSL)()(0;1)(A200)(TEMP) 
+(-)(NUSL)()(0;1)(A200)(TRBC) 
  TEMP   5   #  VARBL, SET NO.,  --- BOUNDARY SET (TEMP) 
 ()()()(0;1)(A200)(SRCT) 
 
  PHI   1     #  VARBL, SET NO.,  --- SPATIAL  SET (PHI) 
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 ()()(EPMN)(1;0)(B3001)(U1) 
+()()(EPMN)(3;0)(B3002)(U1) 
+()()(EPMN)(2;0)(B3001)(U2) 
+()()(EPMN)(4;0)(B3002)(U2) 
+()()(EPMN)(1122;-1)(B3011)(PHI) 
+()()(EPMN)(3344;-1)(B3022)(PHI) 
+()()(EPMN)(1324;-1)(B3021)(PHI) 
+()()(EPMN)(1324;-1)(B3012)(PHI) 
 
  PHI   3  #  VARBL, SET NO.,-- BOUNDARY SET (PHI) 
 (-)()()(1;0)(A200)(U1) 
+()()()(2;0)(A200)(U2)   
 
JACOBIANS 
  U1  U1  1  1  #  VARBL, VARDIF, SET, DIRECTION 1 
 ()()()(;1)(B200)() 
  U1  U1  2  1  #  VARBL, VARDIF, SET, DIRECTION 1 
+()()(U1+U2)(1020;0)(B3001)() 
+()()(U1+U2)(3040;0)(B3002)() 
+()()(U1)(1;0)(B3100)() 
+()()(U1)(3;0)(B3200)() 
+(REI)()()(1122;-1)(B211)() 
+(REI)()()(1324;-1)(B212)() 
+(REI)()()(1324;-1)(B221)() 
+(REI)()()(3344;-1)(B222)() 
+(BETA,HT)()(U1,U1)(11;-1.0)(B3011)() 
+(BETA,HT)()(U1,U2)(12;-1.0)(B3011)() 
+(BETA,HT)()(U1,U2)(21;-1.0)(B3011)() 
+(BETA,HT)()(U2,U2)(22;-1.0)(B3011)() 
+(BETA,HT)()(U1,U1)(13;-1.0)(B3012)() 
+(BETA,HT)()(U1,U2)(14;-1.0)(B3012)() 
+(BETA,HT)()(U1,U2)(23;-1.0)(B3012)() 
+(BETA,HT)()(U2,U2)(24;-1.0)(B3012)() 
+(BETA,HT)()(U1,U1)(31;-1.0)(B3021)() 
+(BETA,HT)()(U1,U2)(32;-1.0)(B3021)() 
+(BETA,HT)()(U1,U2)(41;-1.0)(B3021)() 
+(BETA,HT)()(U2,U2)(42;-1.0)(B3021)() 
+(BETA,HT)()(U1,U1)(33;-1.0)(B3022)() 
+(BETA,HT)()(U1,U2)(34;-1.0)(B3022)() 
+(BETA,HT)()(U1,U2)(43;-1.0)(B3022)() 
+(BETA,HT)()(U2,U2)(44;-1.0)(B3022)() 
 
  U1  U2  2  1  #  
 ()()(U1)(2;0)(B3100)() 
+()()(U1)(4;0)(B3200)() 
 
   U1  PHI 1 1 # 
 ()()()(1;0)(B201)() 
+()()()(3;0)(B202)() 
 
  U2  U1  2  1  #  
 ()()(U2)(1;0)(B3100)() 
+()()(U2)(3;0)(B3200)() 
 
  U2  U2  1  1  #  
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 ()()()(;1)(B200)() 
  U2  U2  2  1  #  
+()()(U1+U2)(1020;0)(B3001)() 
+()()(U1+U2)(3040;0)(B3002)() 
+()()(U2)(2;0)(B3100)() 
+()()(U2)(4;0)(B3200)() 
+(REI)()()(1122;-1)(B211)() 
+(REI)()()(1324;-1)(B212)() 
+(REI)()()(1324;-1)(B221)() 
+(REI)()()(3344;-1)(B222)() 
+(BETA,HT)()(U1,U1)(11;-1.0)(B3011)() 
+(BETA,HT)()(U1,U2)(12;-1.0)(B3011)() 
+(BETA,HT)()(U1,U2)(21;-1.0)(B3011)() 
+(BETA,HT)()(U2,U2)(22;-1.0)(B3011)() 
+(BETA,HT)()(U1,U1)(13;-1.0)(B3012)() 
+(BETA,HT)()(U1,U2)(14;-1.0)(B3012)() 
+(BETA,HT)()(U1,U2)(23;-1.0)(B3012)() 
+(BETA,HT)()(U2,U2)(24;-1.0)(B3012)() 
+(BETA,HT)()(U1,U1)(31;-1.0)(B3021)() 
+(BETA,HT)()(U1,U2)(32;-1.0)(B3021)() 
+(BETA,HT)()(U1,U2)(41;-1.0)(B3021)() 
+(BETA,HT)()(U2,U2)(42;-1.0)(B3021)() 
+(BETA,HT)()(U1,U1)(33;-1.0)(B3022)() 
+(BETA,HT)()(U1,U2)(34;-1.0)(B3022)() 
+(BETA,HT)()(U1,U2)(43;-1.0)(B3022)() 
+(BETA,HT)()(U2,U2)(44;-1.0)(B3022)() 
 
  U2 TEMP 2  1 # 
+(-,GRSH,RE2I)()()(;1)(B200)() 
 
   U2  PHI  1 1 # 
 ()()()(2;0)(B201)() 
+()()()(4;0)(B202)() 
 
 TEMP U1 2 1 # 
()()(TEMP)(1;0)(B3100)()+()()(TEMP)(3;0)(B3200)() 
 
 TEMP U2 2 1 # 
()()(TEMP)(2;0)(B3100)()+()()(TEMP)(4;0)(B3200)() 
 
  TEMP TEMP 1  1     # 
 ()()()(0;1)(B200)() 
  TEMP TEMP 2  1    # 
+()()(U1+U2)(1020;0)(B3001)() 
+()()(U1+U2)(3040;0)(B3002)() 
+(PEI)()()(1122;-1)(B3011)() 
+(PEI)()()(3344;-1)(B3022)() 
+(PEI)()()(1324;-1)(B3021)() 
+(PEI)()()(1324;-1)(B3012)() 
+(BETAT,HT)()(U1,U1)(11;-1.0)(B3011)() 
+(BETAT,HT)()(U1,U2)(12;-1.0)(B3011)() 
+(BETAT,HT)()(U1,U2)(21;-1.0)(B3011)() 
+(BETAT,HT)()(U2,U2)(22;-1.0)(B3011)() 
+(BETAT,HT)()(U1,U1)(13;-1.0)(B3012)() 
+(BETAT,HT)()(U1,U2)(14;-1.0)(B3012)() 
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+(BETAT,HT)()(U1,U2)(23;-1.0)(B3012)() 
+(BETAT,HT)()(U2,U2)(24;-1.0)(B3012)() 
+(BETAT,HT)()(U1,U1)(31;-1.0)(B3021)() 
+(BETAT,HT)()(U1,U2)(32;-1.0)(B3021)() 
+(BETAT,HT)()(U1,U2)(41;-1.0)(B3021)() 
+(BETAT,HT)()(U2,U2)(42;-1.0)(B3021)() 
+(BETAT,HT)()(U1,U1)(33;-1.0)(B3022)() 
+(BETAT,HT)()(U1,U2)(34;-1.0)(B3022)() 
+(BETAT,HT)()(U1,U2)(43;-1.0)(B3022)() 
+(BETAT,HT)()(U2,U2)(44;-1.0)(B3022)() 
 TEMP TEMP 3  1 #  
 ()(NUSL)()(0;1)(A200)() 
 
  PHI U1  1 1 # 
 ()()(EPMN)(1;0)(B3001)() 
+()()(EPMN)(3;0)(B3002)() 
  PHI U1  3 1 # 
 (-)()()(1;0)(A200)() 
 
  PHI U2 1 1 # 
 ()()(EPMN)(2;0)(B3001)() 
+()()(EPMN)(4;0)(B3002)() 
  PHI U2 3 1 # 
 ()()()(2;0)(A200)() 
 
  PHI PHI  1  1  #  VARBL, VARDIF, SET, ALL DIRECTIONS 
 ()()(EPMN)(1122;-1)(B3011)() 
+()()(EPMN)(3344;-1)(B3022)() 
+()()(EPMN)(1324;-1)(B3021)() 
+()()(EPMN)(1324;-1)(B3012)() 
 
GROUP FREQUENCY 
      1 
SOLUTION TYPE 
  DELTA_Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE FILE Sij **** 
  2-D  PHI ALGORITHM  Strain Tensor  (12/05) 
 
RESIDUALS 
  S11  2  # LOAD SET -{B} FOR S11 
+(-)()()(1;0)(B201)(U1) 
+(-)()()(3;0)(B202)(U1) 
 
  S12  2  # LOAD SET -{B} FOR S12 
+(-,HALF)()()(2;0)(B201)(U1) 
+(-,HALF)()()(4;0)(B202)(U1) 
+(-,HALF)()()(1;0)(B201)(U2) 
+(-,HALF)()()(3;0)(B202)(U2) 
 
  S22  2  # LOAD SET -{B} FOR S22 
+(-)()()(2;0)(B201)(U2) 
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+(-)()()(4;0)(B202)(U2) 
 
JACOBIANS 
  S11  S11  2  1  # S11: D(S11)/D(S11) 
 ()()()(0;1)(B200)() 
 
  S12  S12  2  1  # S12: D(S12)/D(S12) 
 ()()()(0;1)(B200)() 
 
  S22  S22  2  1  # S22: D(S22)/D(S22) 
 ()()()(0;1)(B200)() 
 
GROUP FREQUENCY 
    1 
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE FILE S33 and S44 **** 
  2-D  PHI ALGORITHM  laplacian of U  (12/05) 
 
RESIDUALS 
  S33  2  # LOAD SET -{B} FOR S33 
+(-)()()(1122;-1)(B211)(U1) 
+(-)()()(1324;-1)(B212)(U1) 
+(-)()()(3142;-1)(B221)(U1) 
+(-)()()(3344;-1)(B222)(U1) 
 
  S44  2  # LOAD SET -{B} FOR S44 
+(-)()()(1122;-1)(B211)(U2) 
+(-)()()(1323;-1)(B212)(U2) 
+(-)()()(3142;-1)(B221)(U2) 
+(-)()()(3344;-1)(B222)(U2) 
 
JACOBIANS 
  S33  S33  2  1  # S33: D(S33)/D(S33) 
+()()()(0;1)(B200)() 
 
  S44  S44  2  1  # RMU_2: D(S44)/D(S44) 
+()()()(0;1)(B200)() 
 
GROUP FREQUENCY 
    1 
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE FILE FFij **** 
  2-D  PHI ALGORITHM   inverse operator on velocity for Layton 2 
(12/05) 
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RESIDUALS 
  XB1  2  # LOAD SET -{B} FOR XB_1 
+(-)()()(0;1)(B200)(U1) 
 
  XB2  2  # LOAD SET -{B} FOR XB_2 
+(-)()()(0;1)(B200)(U2) 
 
JACOBIANS 
  XB1  XB1  2  1  # XB_1: D(XB_1)/D(XB_1) 
+()()()(0;1)(B200)() 
+(SIXTH)()()(1122;0)(B211)() 
+(SIXTH)()()(1324;0)(B212)() 
+(SIXTH)()()(3142;0)(B221)() 
+(SIXTH)()()(3344;0)(B222)() 
 
  XB2  XB2  2  1  # XB_2: D(XB_2)/D(XB_2) 
+()()()(0;1)(B200)() 
+(SIXTH)()()(1122;0)(B211)() 
+(SIXTH)()()(1324;0)(B212)() 
+(SIXTH)()()(3142;0)(B221)() 
+(SIXTH)()()(3344;0)(B222)() 
 
GROUP FREQUENCY 
    1 
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE FILE RETS **** 
  2-D  PHI ALGORITHM  turb. Reynolds number, Smagorinsky SGS  (12/05) 
 
RESIDUALS 
  RETS  2  # LOAD SET -{B} FOR RETS 
+(-,MULS)()()(0;2)(B200)(SSQ) 
 
JACOBIANS 
  RETS  RETS  2  1  # RETS: D(RETS)/D(RETS) 
+()()()(0;1)(B200)() 
 
GROUP FREQUENCY 
    1 
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE FILE RETA **** 
  2-D  PHI ALGORITHM  turb. Reynolds number, Layton 1 SGS  (12/05) 
 
RESIDUALS 
  RETA  2  # LOAD SET -{B} FOR RETA 
+(-,MULA)()()(0;2.5)(B200)(SSQ2) 
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JACOBIANS 
  RETA  RETA  2  1  # RETA: D(RETA)/D(RETA) 
+()()()(0;1)(B200)() 
 
GROUP FREQUENCY 
    1 
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE FILE RETB **** 
  2-D  PHI ALGORITHM  turb. Reynolds number, Layton 2 SGS  (12/05) 
 
RESIDUALS 
  RETB  2  # LOAD SET -{B} FOR RETB 
+(-,MULB)()()(0;1.5)(B200)(SBQ2) 
 
JACOBIANS 
  RETB  RETB  2  1  # RETB: D(RETB)/D(RETB) 
+()()()(0;1)(B200)() 
 
GROUP FREQUENCY 
    1 
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE FILE RSij **** 
  2-D  PHI ALGORITHM  rational LES Reynolds stress tensor  (12/05) 
 
RESIDUALS 
  RS11  2  # LOAD SET -{B} FOR RS_11 
+(-)()(U1)(1122;-1)(B3101)(U1) 
+(-)()(U1)(1324;-1)(B3102)(U1) 
+(-)()(U1)(3142;-1)(B3201)(U1) 
+(-)()(U1)(3344;-1)(B3202)(U1) 
 
  RS12  2  # LOAD SET -{B} FOR RS_12 
+(-)()(U1)(1122;-1)(B3101)(U2) 
+(-)()(U1)(1323;-1)(B3102)(U2) 
+(-)()(U1)(3142;-1)(B3201)(U2) 
+(-)()(U1)(3344;-1)(B3202)(U2) 
 
  RS22  2  # LOAD SET -{B} FOR RS_22 
+(-)()(U2)(1122;-1)(B3101)(U2) 
+(-)()(U2)(1324;-1)(B3102)(U2) 
+(-)()(U2)(3142;-1)(B3201)(U2) 
+(-)()(U2)(3344;-1)(B3202)(U2) 
 
JACOBIANS 
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  RS11  RS11  2  1  # RS_11: D(RS_11)/D(RS_11) 
+()()()(0;1)(B200)() 
+(SIXTH,CF2)()()(1122;0)(B211)() 
+(SIXTH,CF2)()()(1324;0)(B212)() 
+(SIXTH,CF2)()()(3142;0)(B221)() 
+(SIXTH,CF2)()()(3344;0)(B222)() 
 
  RS12  RS12  2  1  # RS_12: D(RS_12)/D(RS_12) 
+()()()(0;1)(B200)() 
+(SIXTH,CF2)()()(1122;0)(B211)() 
+(SIXTH,CF2)()()(1324;0)(B212)() 
+(SIXTH,CF2)()()(3142;0)(B221)() 
+(SIXTH,CF2)()()(3344;0)(B222)() 
 
  RS22  RS22  2  1  # RS_22: D(RS_22)/D(RS_22) 
+()()()(0;1)(B200)() 
+(SIXTH,CF2)()()(1122;0)(B211)() 
+(SIXTH,CF2)()()(1324;0)(B212)() 
+(SIXTH,CF2)()()(3142;0)(B221)() 
+(SIXTH,CF2)()()(3344;0)(B222)() 
 
GROUP FREQUENCY 
    1 
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE FILE FFij **** 
  2-D  PHI ALGORITHM  mom. equation, rational LES  filter flux  (12/05) 
 
RESIDUALS 
  FF11  2  # LOAD SET -{B} FOR FF11 
+(THIRD,CF2)()()(0;2)(B200)(RS11) 
 
  FF12  2  # LOAD SET -{B} FOR FF12 
+(THIRD,CF2)()()(0;2)(B200)(RS12) 
 
  FF22  2  # LOAD SET -{B} FOR FF22 
+(THIRD,CF2)()()(0;2)(B200)(RS22) 
 
JACOBIANS 
  FF11  FF11  2  1  # FF11: D(FF11)/D(FF11) 
 ()()()(0;1)(B200)() 
 
  FF12  FF12  2  1  # FF12: D(FF12)/D(FF12) 
 ()()()(0;1)(B200)() 
 
  FF22  FF22  2  1  # FF22: D(FF22)/D(FF22) 
 ()()()(0;1)(B200)() 
 
GROUP FREQUENCY 
    1 
SOLUTION TYPE 
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  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE FILE FBij **** 
  2-D  PHI ALGORITHM   mom. equ. beta SGS tensor (12/05) 
 
RESIDUALS 
  FB11  2  # LOAD SET -{B} FOR FB_11 
+(-,FAMUL,RENO)()(U1,U1)(0;2)(B3000)(S11) 
+(-,FAMUL,RENO)()(U1,U2)(0;2)(B3000)(S12) 
+(-,FAMUL,RENO)()(U1,U1)(0;2)(B3000)(S11) 
+(-,FAMUL,RENO)()(U1,U2)(0;2)(B3000)(S12) 
 
  FB12  2  # LOAD SET -{B} FOR FB_12 
+(-,FAMUL,RENO)()(U2,U1)(0;2)(B3000)(S11) 
+(-,FAMUL,RENO)()(U2,U2)(0;2)(B3000)(S12) 
+(-,FAMUL,RENO)()(U1,U1)(0;2)(B3000)(S12) 
+(-,FAMUL,RENO)()(U1,U2)(0;2)(B3000)(S22) 
 
  FB21  2  # LOAD SET -{B} FOR FB_21 
+(-,FAMUL,RENO)()(U1,U1)(0;2)(B3000)(S12) 
+(-,FAMUL,RENO)()(U1,U2)(0;2)(B3000)(S22) 
+(-,FAMUL,RENO)()(U2,U1)(0;2)(B3000)(S11) 
+(-,FAMUL,RENO)()(U2,U2)(0;2)(B3000)(S12) 
 
  FB22  2  # LOAD SET -{B} FOR FB_22 
+(-,FAMUL,RENO)()(U2,U1)(0;2)(B3000)(S12) 
+(-,FAMUL,RENO)()(U2,U2)(0;2)(B3000)(S22) 
+(-,FAMUL,RENO)()(U2,U1)(0;2)(B3000)(S12) 
+(-,FAMUL,RENO)()(U2,U2)(0;2)(B3000)(S22) 
 
JACOBIANS 
  FB11  FB11  2  1  # FB_11: D(FB_11)/D(FB_11) 
 ()()()(0;1)(B200)() 
 
  FB21  FB21  2  1  # FB_21: D(FB_21)/D(FB_21) 
 ()()()(0;1)(B200)() 
 
  FB12  FB12  2  1  # FB_12: D(FB_12)/D(FB_12) 
 ()()()(0;1)(B200)() 
 
  FB22  FB22  2  1  # FB_22: D(FB_22)/D(FB_22) 
 ()()()(0;1)(B200)() 
 
GROUP FREQUENCY 
    1 
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE FILE FDij **** 
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  2-D  PHI ALGORITHM  mom. equation laminar stress tensor (12/05) 
 
RESIDUALS 
  FD11  2  # LOAD SET -{B} FOR FD11 
+(-,TWO,REI)()()(1;0)(B201)(U1) 
+(-,TWO,REI)()()(3;0)(B202)(U1) 
 
  FD12  2  # LOAD SET -{B} FOR FD12 
+(-,REI)()()(2;0)(B201)(U1) 
+(-,REI)()()(4;0)(B202)(U1) 
+(-,REI)()()(1;0)(B201)(U2) 
+(-,REI)()()(3;0)(B202)(U2) 
 
  FD22  2  # LOAD SET -{B} FOR FD22 
+(-,TWO,REI)()()(2;0)(B201)(U2) 
+(-,TWO,REI)()()(4;0)(B202)(U2) 
 
JACOBIANS 
  FD11  FD11  2  1  # FD11: D(FD11)/D(FD11) 
 ()()()(0;1)(B200)() 
 
  FD12  FD12  2  1  # FD12: D(FD12)/D(FD12) 
 ()()()(0;1)(B200)() 
 
  FD22  FD22  2  1  # FD22: D(FD22)/D(FD22) 
 ()()()(0;1)(B200)() 
 
GROUP FREQUENCY 
    1 
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE FILE FCij **** 
  2-D  PHI ALGORITHM  mom. equation convective flux  (12/05) 
 
RESIDUALS 
  FC11  2  # LOAD SET -{B} FOR FC11 
+(-)()(U1)(0;1)(B200)(U1) 
 
  FC12  2  # LOAD SET -{B} FOR FC12 
+(-)()(U2)(0;1)(B200)(U1) 
 
  FC22  2  # LOAD SET -{B} FOR FC22 
+(-)()(U2)(0;1)(B200)(U2) 
 
JACOBIANS 
  FC11  FC11  2  1  # FC11: D(FC11)/D(FC11) 
 ()()()(0;1)(B200)() 
 
  FC12  FC12  2  1  # FC12: D(FC12)/D(FC12) 
 ()()()(0;1)(B200)() 
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  FC22  FC22  2  1  # FC22: D(FC22)/D(FC22) 
 ()()()(0;1)(B200)() 
 
GROUP FREQUENCY 
    1 
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE FILE FSij **** 
  2-D  PHI ALGORITHM  Smagorinsky SGS tensor (12/05) 
 
RESIDUALS         
  FS11  2  # LOAD SET -{B} FOR FS11 
+(-,REI)()(RETS)(0;1)(B200)(S11) 
 
  FS12  2  # LOAD SET -{B} FOR FS12 
+(-,REI)()(RETS)(0;1)(B200)(S12) 
 
  FS22  2  # LOAD SET -{B} FOR FS22 
+(-,REI)()(RETS)(0;1)(B200)(S22) 
 
JACOBIANS 
  FS11  FS11  2  1  # FS11: D(FS11)/D(FS11) 
 ()()()(0;1)(B200)() 
 
  FS12  FS12  2  1  # FS12: D(FS12)/D(FS12) 
 ()()()(0;1)(B200)() 
 
  FS22  FS22  2  1  # FS22: D(FS22)/D(FS22) 
 ()()()(0;1)(B200)() 
 
GROUP FREQUENCY 
    1 
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE FILE FLij **** 
  2-D  PHI ALGORITHM  Layton 1 SGS tensor (12/05) 
 
RESIDUALS 
  FL11  2  # LOAD SET -{B} FOR FL11 
+(-,REI)()(RETA)(0;1)(B200)(S11) 
 
  FL12  2  # LOAD SET -{B} FOR FL12 
+(-,REI)()(RETA)(0;1)(B200)(S12) 
 
  FL22  2  # LOAD SET -{B} FOR FL22 
+(-,REI)()(RETA)(0;1)(B200)(S22) 
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JACOBIANS 
  FL11  FL11  2  1  # FL11: D(FL11)/D(FL11) 
 ()()()(0;1)(B200)() 
 
  FL12  FL12  2  1  # FL12: D(FL12)/D(FL12) 
 ()()()(0;1)(B200)() 
 
  FL22  FL22  2  1  # FL22: D(FL22)/D(FL22) 
 ()()()(0;1)(B200)() 
 
GROUP FREQUENCY 
    1 
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE FILE FIij **** 
  2-D  PHI ALGORITHM  Illiescu SGS tensor  (12/05) 
 
RESIDUALS 
  FI11  2  # LOAD SET -{B} FOR FI11 
+(-,REI)()(RETB)(0;1)(B200)(S11) 
 
  FI12  2  # LOAD SET -{B} FOR FI12 
+(-,REI)()(RETB)(0;1)(B200)(S12) 
 
  FI22  2  # LOAD SET -{B} FOR FI22 
+(-,REI)()(RETB)(0;1)(B200)(S22) 
 
JACOBIANS 
  FI11  FI11  2  1  # SG11: D(FI11)/D(FI11) 
 ()()()(0;1)(B200)() 
 
  FI12  FI12  2  1  # FI12: D(FI12)/D(FI12) 
 ()()()(0;1)(B200)() 
 
  FI22  FI22  2  1  # FI22: D(FI22)/D(FI22) 
 ()()()(0;1)(B200)() 
 
GROUP FREQUENCY 
    1 
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE FILE TBj **** 
  2-D  PHI ALGORITHM   energy equation SGS vector TBj (02/06) 
 
RESIDUALS 
  TB1  2  # LOAD SET -{B} FOR TB_1 
+(-,TAMUL,PE)()(U1,U1)(1;2)(B3001)(TEMP) 
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+(-,TAMUL,PE)()(U1,U1)(3;2)(B3002)(TEMP) 
+(-,TAMUL,PE)()(U1,U2)(2;2)(B3001)(TEMP) 
+(-,TAMUL,PE)()(U1,U2)(4;2)(B3002)(TEMP) 
 
  TB2  2  # LOAD SET -{B} FOR TB_2 
+(-,TAMUL,PE)()(U1,U2)(1;2)(B3001)(TEMP) 
+(-,TAMUL,PE)()(U1,U2)(3;2)(B3002)(TEMP) 
+(-,TAMUL,PE)()(U2,U2)(2;2)(B3001)(TEMP) 
+(-,TAMUL,PE)()(U2,U2)(4;2)(B3002)(TEMP) 
 
JACOBIANS 
  TB1  TB1  2  1  # TB_1: D(TB_1)/D(TB_1) 
 ()()()(0;1)(B200)() 
 
  TB2  TB2  2  1  # TB_2: D(TB_2)/D(TB_2) 
 ()()()(0;1)(B200)() 
 
GROUP FREQUENCY 
    1 
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE FILE YTj **** 
  2-D  PHI ALGORITHM  rational LES temperature stress vector Yj  
(02/06) 
 
RESIDUALS 
  YT1  2  # LOAD SET -{B} FOR YT_1 
+(-)()(U1)(1122;-1)(B3101)(TEMP) 
+(-)()(U1)(1324;-1)(B3102)(TEMP) 
+(-)()(U1)(3142;-1)(B3201)(TEMP) 
+(-)()(U1)(3344;-1)(B3202)(TEMP) 
 
  YT2  2  # LOAD SET -{B} FOR YT_2 
+(-)()(U2)(1122;-1)(B3101)(TEMP) 
+(-)()(U2)(1324;-1)(B3102)(TEMP) 
+(-)()(U2)(3142;-1)(B3201)(TEMP) 
+(-)()(U2)(3344;-1)(B3202)(TEMP) 
 
JACOBIANS 
  YT1  YT1  2  1  # YT_1: D(YT_1)/D(YT_1) 
+()()()(0;1)(B200)() 
+(SIXTH,CF2)()()(1122;0)(B211)() 
+(SIXTH,CF2)()()(1324;0)(B212)() 
+(SIXTH,CF2)()()(3142;0)(B221)() 
+(SIXTH,CF2)()()(3344;0)(B222)() 
 
  YT2  YT2  2  1  # YT_2: D(YT_2)/D(YT_2) 
+()()()(0;1)(B200)() 
+(SIXTH,CF2)()()(1122;0)(B211)() 
+(SIXTH,CF2)()()(1324;0)(B212)() 
+(SIXTH,CF2)()()(3142;0)(B221)() 
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+(SIXTH,CF2)()()(3344;0)(B222)() 
 
GROUP FREQUENCY 
    1 
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE FILE TFj **** 
  2-D  PHI ALGORITHM  LES filter flux for energy equation TFj (1/06) 
 
RESIDUALS 
  TF1  2  # LOAD SET -{B} FOR TF1 
+(THIRD,CF2)()()(0;2)(B200)(YT1) 
 
  TF2  2  # LOAD SET -{B} FOR TF2 
+(THIRD,CF2)()()(0;2)(B200)(YT2) 
 
JACOBIANS 
  TF1  TF1  2  1  # TF1: D(TF1)/D(TF1) 
 ()()()(0;1)(B200)() 
 
  TF2  TF2  2  1  # TF2: D(TF2)/D(TF2) 
 ()()()(0;1)(B200)() 
 
GROUP FREQUENCY 
    1 
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE FILE FDij **** 
  2-D  PHI ALGORITHM  energy equation lam. diff. flux TDj (02/06) 
 
RESIDUALS 
  TD1  2  # LOAD SET -{B} FOR TD1 
+(-,PEI)()()(1;0)(B201)(TEMP) 
+(-,PEI)()()(3;0)(B202)(TEMP) 
 
  TD2  2  # LOAD SET -{B} FOR TD2 
+(-,PEI)()()(2;0)(B201)(TEMP) 
+(-,PEI)()()(4;0)(B202)(TEMP) 
 
JACOBIANS 
  TD1  TD1  2  1  # TD1: D(TD1)/D(TD1) 
 ()()()(0;1)(B200)() 
 
  TD2  TD2  2  1  # TD2: D(TD2)/D(TD2) 
 ()()()(0;1)(B200)() 
 
GROUP FREQUENCY 
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    1 
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE TEMP.PHI **** 
   OMEGA - FROM DELXU  (1/99) 
 
RESIDUALS 
  OMGA   2    #  VARBL, SET NO.,  --- SPATIAL  SET (OMGA) 
 ()()()(2;0)(B201)(U1) 
+()()()(4;0)(B202)(U1) 
+(-)()()(1;0)(B201)(U2) 
+(-)()()(3;0)(B202)(U2) 
 
JACOBIANS 
  OMGA OMGA  2  1  #  VARBL, VARDIF, SET, ALL DIRECTIONS 
 ()()()(0;1)(B200)() 
 
GROUP FREQUENCY 
      1  
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE TEMP.PHI **** 
   DELSQ PSI FROM OMEGA  (1/99) 
 
RESIDUALS 
  PSI   2  #  VARBL, SET NO.,  --- SPATIAL  SET (PSI) 
 (-)()()(0;1)(B200)(OMGA) 
 
JACOBIANS 
  PSI PSI  2  1 # VARBL, VARDIF, SET, ALL DIRECTIONS 
 ()()()(1122;-1)(B211)() 
+()()()(3344;-1)(B222)() 
+()()()(1324;-1)(B221)() 
+()()()(1324;-1)(B212)() 
 
GROUP FREQUENCY 
      1  
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE TEMP.PHI **** 
  ENERGY NORM COMPUTATIONS, ALL VARIABLES/PARAMETERS  (1/99) 
 
RESIDUALS 
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  DUNC   1   #                    TEMPORAL TERM IN {F(Q)}  
 ()()()(0;1)(B200)(-DUNC) 
 
JACOBIANS 
  DUNC DUNC   1 1   #             TIME TERM IN {F(Q)}  
 ()()()(0;1)(A200)() 
  DUNC DUNC   1 2   #             TIME TERM IN {F(Q)}  
 ()()()(0;1)(A200)() 
 
NORMS 
  OMGE  1  T                           ENERGY NORM FOR OMGA 
 (HALF,REI)()(OMGA)(1122;-1)(B211)(OMGA) 
 (HALF,REI)()(OMGA)(1324;-1)(B212)(OMGA) 
 (HALF,REI)()(OMGA)(1324;-1)(B221)(OMGA) 
 (HALF,REI)()(OMGA)(3344;-1)(B222)(OMGA) 
  
  PSIE  1  T                           ENERGY NORM FOR PSI 
 (HALF)()(PSI)(1122;-2)(B211)(PSI) 
 (HALF)()(PSI)(1324;-2)(B212)(PSI) 
 (HALF)()(PSI)(1324;-2)(B221)(PSI) 
 (HALF)()(PSI)(3344;-2)(B222)(PSI) 
  
  U1E  1  T                           ENERGY NORM FOR U1 
 (HALF)()(U1)(1122;-1)(B211)(U1) 
 (HALF)()(U1)(1324;-1)(B212)(U1) 
 (HALF)()(U1)(1324;-1)(B221)(U1) 
 (HALF)()(U1)(3344;-1)(B222)(U1) 
  
  U2E  1  T                           ENERGY NORM FOR U2 
 (HALF)()(U2)(1122;-1)(B211)(U2) 
 (HALF)()(U2)(1324;-1)(B212)(U2) 
 (HALF)()(U2)(1324;-1)(B221)(U2) 
 (HALF)()(U2)(3344;-1)(B222)(U2) 
  
  PRSE  1  T                           ENERGY NORM FOR PRES 
 (HALF)()(PRES)(1122;-1)(B211)(PRES) 
 (HALF)()(PRES)(1324;-1)(B212)(PRES) 
 (HALF)()(PRES)(1324;-1)(B221)(PRES) 
 (HALF)()(PRES)(3344;-1)(B222)(PRES) 
  
  TMPE  1  T                           ENERGY NORM FOR TEMP 
 (HALF,PEI)()(TEMP)(1122;-1)(B211)(TEMP) 
 (HALF,PEI)()(TEMP)(1324;-1)(B212)(TEMP) 
 (HALF,PEI)()(TEMP)(1324;-1)(B221)(TEMP) 
 (HALF,PEI)()(TEMP)(3344;-1)(B222)(TEMP) 
  
  PHIE  1  T                           ENERGY NORM FOR PHI 
 (HALF)()(PHI)(1122;-1)(B211)(PHI) 
 (HALF)()(PHI)(1324;-1)(B212)(PHI) 
 (HALF)()(PHI)(1324;-1)(B221)(PHI) 
 (HALF)()(PHI)(3344;-1)(B222)(PHI) 
  
GROUP FREQUENCY 
      1 
SOLUTION TYPE 
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  DELTA_Q 
  FACTORED_GAUSS_ELIMINATION 
  IMPLICIT_EULER 
 
END 
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