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Abstract 

 A theory is developed in one and two space dimensions that successfully predicts 

optimal algorithm constructions for the convection operator intrinsic to unsteady Navier-

Stokes (NS) problem statements. The analysis statement is parameterized via a Taylor 

series (TS) modification to the parent NS conservation principles statements. Phase 

velocity and amplification factor error analyses are enabled via weak form discretized 

implementations assembled at the generic node. The parameterized error statement is 

then resolved into a Taylor series expansion in non-dimensional wave number space, 

admitting identifications that progressively annihilate lowest order error terms. The 

theory computational implementation is via a Galerkin weak statement on the TS 

modified formulation, discretely implemented using linear and bi-linear finite element 

basis functions for one and two dimensions respectively. 

 The theory is extended to one dimension FE quadratic basis. A general 

formulation for TWS class of algorithms enabling analysis for phase accuracy is derived. 

Matrix stability analysis approach pertinent to TWS algorithms is presented. Theory 

suggested results are ported to other verification and validation problems and analyzed 

for solution fidelity. One dimensional space test cases include advection-diffusion and 

non-linear Burgers equation. Two-dimensional space test cases include a pure advection 

verification problem, an advection-diffusion-source verification problem and 8x1 full 

Navier-Stokes validation-class thermal cavity problem. Algorithm predictability is also 
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compared for the selected algorithms on non-uniform Cartesian and regular but non-

Cartesian triangular mesh. 

 A computational approach to obtain progressively higher order phase accurate 

solutions using a Matlab enabled optimization theory has also been examined. The 

unusual behavior algorithms thus generated are analyzed under the anomalous behavior 

topic generated by this approach.  
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Chapter 1 

1. Introduction 

1.1. Motivation and history 

 Computational fluid dynamics (CFD) is the name of the field given to generation 

of approximate numerical solutions to fluid-thermal flow problems. In the past decade 

CFD has matured to significantly enhance and complement the classical theoretical and 

experimental understanding of the problem class. The ultimate goal of CFD is to 

incorporate it into the engineering design phase, and hence to moderate the need for 

experimental testing. Hence, the fundamental CFD quest is to obtain best possible 

solution. The multitude of numerical techniques proposed by numerous researchers to 

solve fluid-thermal flow problems exhibit far from satisfactory performance. This 

research is an effort in the direction of generating more mathematically precise, hence 

more predictable performance algorithms. 

 CFD in one form or an other attempts to “solve” the fundamental conservation 

principles of mass, momentum and energy, which define the physics of the fluid-thermal 

problem [1]. It is a process in which approximate solutions are obtained to the resultant 

partial differential equation (PDE) system. The most commonly used approximation 

procedure employ domain discretization via finite difference, finite volume and finite 

element methodology. This research uses the finite element implementation, as perceived 
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by this author for the mathematical elegance purely defined by calculus, and the ability of 

its theory to precisely qualify approximation error in intrinsic norms. 

 This research uses the standard Galerkin weak form theory approach, applied to 

modified conservation equation, which has its roots in the pioneering work of Donea [2]. 

He published the original modified conservation principle approach to weak form 

algorithm performance optimization, the time-explicit Taylor-Galerkin algorithm, and 

applied it to convective transport problems. Baker and Kim [3] generalized the approach, 

including the option for an implicit time formulation, in developing the parameterized 

Taylor weak statement (TWS) modified hyperbolic conservation law theory, and 

documented improved performance opportunities over the classical Galerkin (GWS) 

algorithm as well as TWS recovery of a dozen or more alternatively-derived algorithms 

 The TWS Taylor series (TS) analysis framework produces a modified restatement 

of fluid-thermal conservation principles PDE systems, in the continuum, parameterized 

by a set of algebraic coefficients associated with arbitrariness in the TS process, [3-4]. 

Upon theory completion, the error associated with generation of an approximate solution 

to the TS-modified conservation principle is rendered orthogonal to the approximation 

trial space in a Galerkin weak form construction, producing the genuine (optimal) 

constraint. 

 Superior performance of TWS over many algorithms has been documented for 1D 

and 2D pure advection problems, [3-6]. Furthermore, the TWS formulation process has 



admitted generation of over a dozen independently derived CFD algorithms, simply by 

selecting appropriate values for the TS-generated parameter set {α, β, γ, μ, θ}. Table 1.1§ 

summarizes this observation for the one-dimensional, scalar advection-diffusion problem 

statement, for the linear finite element basis TWS discrete implementation, as augmented 

from the original publication, [3]. 

 Chaffin and Baker [4] document TWS algorithm applications to the 

incompressible Navier-Stokes (INS) equations using a linear FE basis implementation 

with implicit time integration. Kolesnikov and Baker [5] developed the TS conservation 

principles modification approach to the steady INS system, which identified the identical 

tensor product continuum term associated with β of the unsteady theory in the limit of 

large Reynolds number. An added caveat of this TWS construction was prediction, and 

computational validation, of the linear FE basis implementation asymptotic convergence 

rate improvement to that associated with the quadratic basis implementation of a GWS 

algorithm for a INS benchmark problem. 

 

1.2. Fourier modal analysis 

 For incisive comparative performance assessment of CFD algorithms, Fourier 

analysis is a preferred approach, admitting detailed phase velocity and amplitude error 

spectral distribution characterization. Vichnevetsky [7,8] reports on the results of Fourier 

analysis predicting phase and group velocity distributions for hyperbolic problem 

 3
§ All tables and figures are located in the appendix
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statement algorithms implemented using both finite difference and finite element 

methods. Comparative phase and amplitude error analysis for finite difference schemes is 

reported by Morton and Mayers [9]. Shakib and Hughes [10] employ Fourier analysis to 

investigate the stability and accuracy of the space-time Galerkin-Least Squares method 

applied to advection-diffusion problems. Christon [11] studied the influence of the finite 

element mass matrix dispersive characteristics for a second-order wave equation. 

Belytschko and Mullen [12] used a generalized Fourier analyses approach to study the 

effects of consistent and lumped mass matrices on the phase speed for linear and 

quadratic finite element basis formulations. Christon et al [13,14] report on a generalized 

Fourier analyses approach and present a very detailed procedure for estimation of error in 

phase and group speeds, discrete diffusivity, and artificial diffusivity in 1D and 2D 

advection-diffusion problems. 

 Comparison of numerically generated solutions to an available analytical solution, 

classed as a verification problem, to 1D and 2D unsteady scalar transport problems 

underlies the analysis process. Due to the use of a mesh of measure h to support the 

discrete approximate solution process, it is well understood that the capability of an 

algorithm to resolve, hence propagate, solution spectral content of measure the order 2h 

is typically thoroughly compromised. This lack of resolution fidelity results in the 

cascading of solution short wave length content into longer wavelength spurious solution 

oscillations and is termed dispersion error. This dispersive error mechanism can be 



moderated by embedding numerical diffusion, which then generates artificial dissipation 

error. 

 The mathematical analysis framework for characterizing dispersive and diffusive 

error mechanisms is briefly reviewed. Referring to Figure 1.1, the phase velocity c is the 

velocity of propagation of a solution component (called a “wave”) of velocity u in the 

direction of the wave number vector κ, [15]. Mathematically,  

   2
( )
κ
⋅

=
u κ κc  (1.1) 

where κ ≡ |κ| is the wave number, which quantifies the number of wave crests existing in 

the interval 2π in the direction of the wave vector angle η, [17]. Thereby, κ=2π/λ, where 

λ is the length of the wave between crests, i.e., wavelength, and κ is orthogonal to wave 

crests. In one dimension, the phase velocity becomes the scalar c identical with the 

magnitude of the imposed velocity of magnitude u. In the discretized solution process, c 

is no longer equal to u, but instead becomes a complex variable with only the real 

component related to u.  Hence, any numerical approximation procedure should seek to 

minimize this error.  

 Group velocity is defined as the velocity with which sinusoidal waves propagate 

energy in a dispersive medium. Mathematically, in two dimensional rectangular Cartesian 

coordinates  
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   1
κ

2

ˆ
κ

=
ˆ

κ

∂ω⎡ ⎤
⎢ ⎥∂
⎢ ⎥∇ ω =

∂ω⎢ ⎥
⎢ ⎥∂⎣ ⎦

i
G(κ)

j
 (1.2) 

where ω represents the cyclic frequency, and κ1 = κcosη and κ2 = κsinη is wave number 

resolution in the x and y directions respectively. In the continuum, group velocity is 

independent of κ and is simply the fluid velocity. However, in the numerical 

approximation, phase and group velocity will differ due to wave number dependence. 

Further, in the discrete or dispersive case, the group velocity is not always aligned with 

the wave vector, but instead has a propagation direction ϕ defined by 

   y1 1 1

x 2

G / κtan tan
G / κ

φ − −⎛ ⎞ ⎛ ∂ω ∂
= =⎜ ⎟ ⎜ ∂ω ∂⎝ ⎠ ⎝

⎞
⎟
⎠

 (1.3) 

Reverting to one dimension, from (1) – (3) 

   
( ) ( )c(κ)κ c(κ)ω(κ)G(κ) c(κ) κ

κ κ κ
∂ ∂∂

= = = +
∂ ∂ ∂

 (1.4) 

Hence, if phase speed c is independent of wave number κ, then group speed is equal to 

the phase speed.  This is true in the continuum; however, in a discrete approximation, 

phase speed is typically wave number dependent, the theoretical characterization of 

which leads to the analysis opportunity. 
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1.3. This dissertation 

 This dissertation research aims to generate a theoretical foundation for 

optimization of a modified conservation principles CFD algorithm. An error 

extremization theory based on generation of an analysis statement amenable to 

optimization is developed. The mathematical foundation is phase velocity error 

characterization, with the theory results ultimately expressed in a Taylor series cast in 

non-dimensional wave number space. The theory is developed in completeness in one 

and two space dimensions, and verification employs available analytical solutions for the 

pure advection problem. The theory is analytically expressible only for spaces spanned 

by uniform discretization in rectangular Cartesian coordinates. Hence, numerical 

experiments are performed on non-uniform Cartesian and regular but non-Cartesian 

triangular meshes to characterize solution fidelity dependence on mesh organization. 

 Optimal linear and bi-linear FE basis algorithms are identified using the 

developed theory for the INS problem class. Their performance is compared to other 

algorithms of the “TWS-type” including Crank-Nicolson finite difference (CN), 

Raymond-Garder (RG), Jiang Least Squares (JLS), Taylor-Galerkin (TG) and classical 

Galerkin Weak Statement (GWS). The results generated from these comparative 

performance assessments are tested for optimal FE algorithm construction for the 1D 

advection-diffusion, 1D non-linear Burgers equation, 2D advection-diffusion with source 

and a 2D NS thermal cavity problem. 
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 The theory is extended to TWS implementation using the FE one dimensional 

quadratic basis. The methodologies available for analytical determination of phase 

velocity for the complete TWS class of algorithms proved intractable, however numerical 

experiments did confirm existence of an optimal-γ algorithm. In addition, a Matlab 

enabled optimization theory is used to automate algorithm error extremization for FE 

linear basis. The resultant anomalous behavioral algorithms are identified, which expands 

the theoretical characterization envelope. 



 

Chapter 2 

2. Modified Conservation Principles Formulation 

2.1. Problem statement 

 The focus is on the convection operator associated with the famous Navier-Stokes 

PDE system characterizing unsteady flow of a viscous, incompressible fluid including 

thermal effects. The incompressible Navier-Stokes (INS) conservation principles for 

mass, momentum and energy in non-dimensional tensor index form are  

  DM: i
0

i

( ) 0∂
ρ = =

∂
L

u
x

  (2.1) 

  DP: ( ) 1i i
i i j ij 2

j j

ˆGrgRe 0
Re

−
⎛ ⎞∂ ∂ ∂

= + + δ − + =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
L

u uu u u P
t x x

i  (2.2) 

  DE: 
2

i 2
i i

1( ) 0
Re Pr

∂Θ ∂Θ ∂ Θ
Θ = + − − =

∂ ∂ ∂
L u

t x x
s  (2.3) 

In (2.1)-(2.3), ui is the velocity vector, P = p/ρo is the kinematic pressure for ρo the 

constant density, Θ is the potential temperature and s is a heat source. The non-

dimensional groups parameterizing solutions to (2.1)-(2.3) are 
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  Grashoff number 
3

2

gβΔTLGr = 
ν

 (2.4) 

  Reynolds number ULRe = 
ν

 (2.5) 

  Prandtl number oρ ν
Pr = pc

k
 (2.6) 

where β is thermal expansion coefficient associated with the Boussinesq approximation, 

[18], ν is kinematic viscosity, cp is the heat capacity at constant pressure and k is the thermal 

conductivity. 

 The PDE system (2.2)-(2.3) constitutes an initial-value, elliptic boundary value 

(EBV) problem statement, solutions to which are subject to the differential constraint 

(2.1). Solutions to (2.1)-(2.3) are dominantly parameterized by Re, which is of order 104 

≤ Re ≤ 106 for realistic flow problems. 

 

2.2. The modified conservation principles parameterization 

 The formulation for the Taylor series (TS) modified conservation principles 

construction is detailed in [3]. The resultant TS modified INS statement for DP generates 

the arbitrary parameter set {α, β, γ, μ} of the form  

 10



   

i i
i i j j k

j k

2
3i i

j k j k m
j k k m

( ) ( ) α β
2

γ μ ( ) 0
6

m t u uu u u u u
x t x

t u uu u u u u O t
x x t x x

⎛ ⎞Δ ∂ ∂ ∂
= − +⎜ ⎟∂ ∂ ∂⎝ ⎠

⎡ ⎤⎛ ⎞Δ ∂ ∂ ∂ ∂ ∂
− + +⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

L L

Δ =

 (2.7) 

where L(ui) remains (2.2) in completeness. The non-linearity in (2.7) severely limits 

theoretical analysis, which is not the case for scalar transport, e.g., (2.3). The 

corresponding TS-modified transport equation for any scalar variable q(xj,t) is 

   
j j k

j k

2
3

j k j k m
j k k m

( ) ( ) α β
2

μ ( ) 0
6

m t q qq q u u u
x t x

t q qu u u u u O t
x x t x x

⎛ ⎞Δ ∂ ∂ ∂
= − +⎜ ⎟∂ ∂ ∂⎝ ⎠

⎡ ⎤⎛ ⎞Δ ∂ ∂ ∂ ∂ ∂
− γ + + Δ⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

L L

=

 (2.8) 

which is amenable to the exacting theoretical analysis presented herein. 
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Chapter 3 

3. Taylor Weak Statement Finite Element Implementation 

3.1. TWS algorithm formulation 

 Any approximation solution qN to (2.7)-(2.8) is defined as an inner product of a 

set of trial space functions Ψ α(x) with a set of time-dependent expansion coefficients, 

specifically 

    (3.1) α α( ) ( )= Ψ ( ) ( )
α

≈ ∑
N

Nq ,t q ,t Q tx x x

Extremization of the error associated with the definition (3.1) accrues to a weak form 

construction with the Galerkin criterion that the test function space is identically the trial 

function space. This renders the associated error eN(x,t) = q(x,t) - qN(x,t) orthogonal to the 

trial function set Ψ α(x) which is optimal. Thereby, the “Taylor” weak form is 

   { }βTWS ( )dτ 0 ,N m N for allq
Ω

≡ Ψ ≡∫ L β  (3.2) 

 Assuming the integrals defined in (3.2) can be evaluated, all x-dependence 

vanishes yielding a large system of ordinary differential equations of the form 

   d{ }TWS = [M] {RES}={0}
d

N Q
t

+  (3.3) 
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where [M] is the TWS parameter augmented “mass matrix” and {RES} contains all other 

contributions from (3.2). The single stage Euler TS with implicitness parameter θ is 

   ( )' ' 2
n+1 n n+1 nθTS:   =  + Δt θ +(1-θ) + (Δ ,Δ )Q Q Q Q O t t3  (3.4) 

From (3.3), d{Q}/dt = {Q}′ = -[M]-1{RES}, hence substituting into (3.4) and multiplying 

through by [M] yields the algebraic statement 

   ( ) ( )TWS θTS [JAC α,β,γ,μ,θ,Re ]{ } {RES ,α,β,γ,μ,θ,Re }+ ⇒ Δ = −h Q Q  (3.5) 

with solution essence 

   {ΔQ} = [JAC]-1{RES} (3.6) 

where [JAC] is the algorithm jacobian matrix and {RES} remains as originally defined.  

 The TWSh+θTS weak form theory is thus complete. What remains is to 

implement (3.2) - (3.6) in computable form, which invariably amounts to definition of 

qN(x,t) in a spatially discrete form, herein denoted qh(x,t).  For this purpose, select the 

finite element trial space basis function set {N k(x)} containing a set of polynomials 

complete to degree k. Thereby, the classical asymptotic convergence theory, [19] predicts 

that for 1/Re > 0, i.e., viscous effects remain important, that the associated semi-discrete 

approximate solution error under mesh refinement is bounded at time t as, 

   ( ) 1
22 f(θ)

H,
C data +C q( ,0)  , γ = min( , -1)

Ω ∂Ω
≤ Δh

e tE
e t h t k rγ x  (3.7) 
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where r is a smoothness measure of the exact solution and C is a constant independent of 

h, the measure of the computational mesh Ωh associated with the FE basis discretization 

formed for {N k(x)}. Also, the error contribution from the time-step Δt, as a function of θ 

is identified. In the instance of negligible viscous effect contribution, i.e., 1/Re ⇒ 0, the 

mesh measure exponent in (3.7) degenerates to γ = min(1,r-1), hence the asymptotic 

convergence rate is independent of the FE basis completeness degree k. 

 

3.2. TWS formulation for one-dimensional linear problems 

 The TS modified scalar transport equation (2.8) simplified to one-dimension is 

   

2
2

2

2
2 2 3

1( ) α β
Pa 2 t

γ μ (Δ ) 0
6

∂ ∂ ∂ Δ ∂ ∂ ∂⎛ ⎞= + − − +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝
⎡ ⎤Δ ∂ ∂ ∂ ∂ ∂⎛ ⎞− + ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

m q q q t q qq u u u
t x x x x
t q qu u u +O t

x x t x x

L
⎠

=
 (3.8) 

where Pa is the placeholder for the non-D parameter appropriate for q. (For (7), Pa = 

RePr, while for mass transport Pa = ReSc, for Sc the Schmidt number for binary 

diffusion.) 

 From (3.2) and (3.8), for FE basis such that test and trial functions are same the 

weak statement can be written as 
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{ }{ } { } { } { } { }

{ } { } { } { } { } { }

{ } { } { }

22

2

22 2

2

N
TWS N N dx Q' u N dx Q

x

N Nu t u t               N dx Q ' N dx Q
2 x 2 x

Nu t               N dx Q ' {0}
6 x

Ω Ω

Ω Ω

Ω

∂
= +

∂

∂ ∂α Δ β Δ
− −

∂

∂γ Δ
− ≡

∂

∫ ∫

∫ ∫

∫

e e

e e

e

T
kN T

k k k

T T
k

k k

T
k

k

∂
k  (3.9) 

Applying integration by parts on the integrands associated with the β and γ terms yields 

 

{ }{ } { } { } { } { }

{ } { } { } { } { } { }

{ } { } { }

2

2 2

N
TWS N N dx Q' u N dx Q

x

N NNu t u t               N dx Q ' dx Q
2 x 2 x x

NNu t               + dx Q ' {0}
6 x x

Ω Ω

Ω Ω

Ω

∂
= +

∂

∂ ∂∂α Δ β Δ
− +

∂ ∂ ∂

∂∂γ Δ
≡

∂ ∂

∫ ∫

∫ ∫

∫

e e

e e

e

T
kN T

k k k

T T
k

k

T
kk

k  (3.10) 

Finally, from (3.5) the TWSh + θTS algebraic form to (3.10) is 

 
{ }

{ }

2 2

2

αC γC θβC[A200 ] [A201 ] [A211 ] θC[A201 ] [A211 ] Q
2 6 2

βC                         = C[A201 ] [A211 ] Q
2

⎡ ⎤
− + + +⎢ ⎥

⎣ ⎦
⎡ ⎤

− +⎢ ⎥
⎣ ⎦

n

d d d d d

d d

Δ

 (3.11) 

where d is a label, e.g., L or Q, representing linear and quadratic basis implementation 

respectively. The symbolically represented FE linear basis matrices are  
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2 1   1 11[A200L] ,   [A211L]
1 2 1   16

1 11[A201L]
1 12

−⎡ ⎤ ⎡
= =

⎤
⎢ ⎥ ⎢− ⎥
⎣ ⎦ ⎣
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦

⎦  (3.12) 

and for FE quadratic basis the matrices are  

  

 4 2 -1  70 -80  10 
1 1[A200Q]  2 16  2 ,   [A211Q] -80 160 -80 
30 30

-1 2 4  10 -80  70 

 -3 4 -1 
1  [A201Q]  -4 0  4 
6

1 -4 3 

⎡ ⎤ ⎡
⎢ ⎥ ⎢= =⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

⎤
⎥
⎥
⎥⎦  (3.13) 

 

3.3. TWS formulation for one-dimensional non-linear Burgers equation 

 The TS modified 1D momentum principle model, called the Burgers equation, 

from (2.7) is 

 DP: 

2
2

2

2
2 3

1( ) α β
Re 2

γ (Δ ) 0
6

∂ ∂ ∂ Δ ∂ ∂ ∂⎛ ⎞= + − − +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
⎛ ⎞Δ ∂ ∂ ∂⎛ ⎞− =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠

m u u u t u uq u u u
t x x x t x
t uu +O t

x x t

L
 (3.14) 

The weak statement formulation process is similar to as identified in previous section. 

The computable algebraic statement is {FQ}, which is a place holder for TWSh + θTS, 

and is given as 
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{ }
{ }

{ }
{ }

{ } { } { } { }

{ } { } { }

{ } { } { }

2
2

2
2

n+1 n+1 n+1n+1

n n

2
2

n+1

α t[A200 ] U [A3010 ]
2FQ U

γ t θ tU [A3011 ] [A211 ]
6 Re

θβ tθ t U [A3001 ] U U [A3011 ] U
2

t [A211 ] U (1 θ) t U [A3001 ] U
Re
(1-θ)β t U [A3011 ] U 0

2

Δ⎡ ⎤+⎢ ⎥
= Δ⎢ ⎥

Δ Δ⎢ ⎥+ +⎢ ⎥⎣ ⎦
Δ

+ Δ +

Δ
+ + − Δ

Δ
+ ≡

T

T

TT

T

n

T

n

d d

d d

d d

d d

d

 (3.15) 

FE linear basis matrices A200L and A211L remains as given in (3.12). The hyper-

matrices A3(⋅) are evaluated as 

   

[ ] [ ]

[ ]

-2 -1 1 -1
-1 -2 1 -11 1A3010L ,   A3011L
2 1 -1 16 2
1 2 -1 1

-2 2
-1 11A3001L
-1 16
-2 2

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢= = ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣
⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎦  (3.16) 

[JAC] remains as defined in (3.5), which is ∂{FQ}/∂{Q}, yielding  
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{ }

{ }
{ }

{ } { } { } { }

{ } { } { } { }

{ } { } { } { }

2
2

n+1 n+1
2

2 2
n+1 1n+1

2

α t[A200 ] U [A3010 ]
2[JAC] ONE

γ t θ tU [A3011 ] [A211 ]
6 Re

θ t U [A3001 ] ONE θ t U [A3100 ] ONE

θβ t U [A3011 ] ONE θβ t U [A3110 ] U
2

γ t α tU [A3110 ] U U [A3010 ] ONE
6 4

+

Δ⎡ ⎤+⎢ ⎥
= ⎢ ⎥

Δ Δ⎢ ⎥+ +⎢ ⎥⎣ ⎦

+ Δ + Δ

Δ
+ + Δ

Δ Δ
+ Δ + Δ

T

T

T T

T T

n

T T

d d

d d

d d

d d

d d

 (3.17) 

Additional hyper-matrices identified in (3.17) are 

   [ ] [ ]

-2 -1  1  1
2  1 -1 -11A3100L ,   A3110L

-1 -2 -1 -16 2
1  2  1  1

1
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢= = ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (3.18) 

 

3.4. TWS formulation for two-dimensional advection-diffusion-source problem 

 A steady state advection-diffusion-source problem with the TWS modified 

restatement of the continuum as identified by Kolesnikov [20] is given as 

 DP: 
2 2

j 2
j j j k

1 Pe( ) 0
Pe 12

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
− − −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

ij
q q h qq  = u s
x x x x

L =   (3.19) 

 18



where h remains the mesh length, and Pe is the Peclet number. For a Gaussian plume 

with uni-directional velocity in the x-direction and diffusion only in the y-direction, 

(3.19) reduces to 

 DP: 
2 2 2

2 2

1 Pe( ) 0
Pe 12

⎛ ⎞ ⎛ ⎞∂ ∂ ∂
− − −⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

q q h qq = u s
x y x

L =  (3.20) 

The weak statement formulation procedure remains same as defined in Section (3.1), and 

the computable TWSh + θTS algebraic form is 

   
21 Pe{FQ} u[B201L] [B222L] [B211L] {Q}

Pe 12
⎡

= + +⎢
⎣ ⎦

h ⎤
⎥  (3.21) 

The matrices [B201L], [B222L] and [B211L] are given in [32]. Again as identified in 

(3.5), [JAC] remains ∂{FQ}/∂{Q}. 

 

3.5. TWS formulation for two-dimensional NS thermal cavity problem 

 The physical problem is governed by (2.1)-(2.6) with TWS theory TS 

modification leading to (2.7). TWSh + θTS weak statement formulation process remains 

as identified in Section (3.1). But now because of multi-dimensionality and incorporation 

of energy equation (2.3), the process is more involved and the number of terms has 

increased significantly. Hence, easily readable six-point template identifying the 

computational algebraic form is supplied in Appendix X. 
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Chapter 4 

4. Theoretical Development and Analysis 

4.1. One-dimension 

 The TS modified scalar transport equation (2.8) simplified to one-dimension is 

   

2
2

2

2
2 2 3

1( ) α β
Pa 2 t

γ μ (Δ ) 0
6

∂ ∂ ∂ Δ ∂ ∂ ∂⎛ ⎞= + − − +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝
⎡ ⎤Δ ∂ ∂ ∂ ∂ ∂⎛ ⎞− + ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

m q q q t q qq u u u
t x x x x
t q qu u u +O t

x x t x x

L
⎠

=
 (4.1) 

where Pa is the placeholder for the non-D parameter appropriate for q. (For (2.3), Pa = 

RePr, while for mass transport Pa = ReSc. Sc is the Schmidt number for binary 

diffusion.) 

 

4.1.1. Linear Basis 

 The amplification factor Gh associated with the discrete approximate solution 

qh(x,t) is determined by assembling TWSh + θTS, (3.5), for (4.1) at the generic mesh 

node Xj, ref. Figure 4.1(a). The resultant form for the linear FE basis implementation is 

the recursion stencil 
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n 1 n
j 1 j 1

n 1 n
j 1 j j+1 j j 1 j j+1 j

n 1 n
j 1 j 1

a   a   a b   b   b

+
− −

+
− −

+
+ +

=

Q Q

Q Q

Q Q

 (4.2) 

where coefficients aj and bj contain all mesh constants as well as the parameter set 

defined in (3.5). Recalling the Fourier representations 

   Qj-1 = Q (x-Δ x) = Qje-im (4.3) 

   Qj+1 = Q (x +Δ x) = Qje+im (4.4) 

where m = κh is the non-dimensional wave number, and Δx = h is the measure of the 

(assumed) uniform mesh. Substituting into (4.2), the solution for the TWS algorithm 

amplification factor is 

   
-i i

j-1 j j+1
-i i

j-1 j j+1

b e +b +b e
G =

a e +a +a e

m m
h

m m  (4.5) 

Inserting data pertinent to the linear FE basis implementation of (3.5) for the restriction 

(4.1), neglecting the μ term as requiring more derivatives than supported by the linear FE 

basis, produces (4.5) as the rational polynomial of complex functions 

( ) ( )

( ) ( )

2 2 2 2

FE( =1)
2 2 2 2

12+γC -3(1-θ)βC -6(1-θ)D + 1-γC +3(1-θ)βC +6(1-θ)D cos -i3C α+(1-θ) sin
2G

12+γC +3θβC +6Dθ + 1-γC -3θβC -6Dθ cos -i3C α-θ sin
2

h
k

m m

m m

⎛ ⎞
⎜ ⎟
⎝ ⎠=

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (4.6) 
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 22

where C = UΔt/h is the Courant number, equivalent to the non-dimensional time step, and 

D ≡ Δt/ Pah2 is the placeholder for the action of physical diffusion. 

 The clear statement of discrete approximation error accrues to multiplying (4.6) 

through by the complex conjugate and clearing the denominator via a sufficiently high-

order Taylor series (TS). The resultant form is Gh = p + iq, and the resultant TS to order 

seven in m is (4.7).  



( )
( ) ( )

( ) ( )

2 3

2 2 3
FE( =1)

2
2 2

2

2

2 2

1 γα α-β + + -α+β θ+θ C
4 61G  = 1-iC + α-β-D -θ C +i

2 α+CD - +2θ
2

β α γ β 3 1 1 3- +C -α+β + -α+ + α α-β + β + γ θ+ -α+β θ +θ
24 8 6 2 4 4 3 2

+C
-1 θD α γD + + + -2αθ+βθ+3

12C C 4 6

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎛ ⎞

⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

h
k m m m

2 3

( )

( )

( )( )

4

2

3 2
2 4

3 2
4 4 2

4 3 4

θ

1 -αβ γ βθ -α αγ α β γ+C + + +C α-β - - -
180 48 72 12 16 4 2 3 36

α αβ α β -3α 3β 3β γ+C θ - 3α-β +γ - +C θ α- - -
2 4 2 3 2 2 4 2+iC

+C 2θ α-β -θ

-α θ+D + +(
24 6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

⎧ ⎫⎛ ⎞ ⎛ ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞ ⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞
⎨ ⎬ ⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠ ⎩ ⎭⎩ ⎭

m

5

3
2 2α αγ 3 2 9α-3θ)θD+C + +(- α+β)αθ- γθ+( α-3β-4θ)θ

8 6 2 3 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞⎛ ⎞

⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

m

( )

( ) ( )

2

5 4 2 2
4

4 2
4 2

3 32 2 4

-α β θ αβ α γ γθ βθ β+ +C -θ - α-β + + +θ
180 720 90 12 8 72 36 8 3

α α β α γ α β γ β+C - + - + α-
32 32 4 3 4 24 3

-5α α β 3β γ 1+C θ + α- + -α α-β - β +γ
16 2 16 2 6

5α α β βC +θ C +9αβ - + - +
4 4 8 8

- ⎧ ⎫⎛ ⎞ ⎛ ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞ ⎛ ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞ ⎛ ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭

⎛ ⎞
⎜ ⎟
⎝ ⎠

+

( ) ( )
2

2 2 2
2

2
2 2 3

4 3 2 2 4 5

3βγ α-
4

-1 2 5+C θ 5α +3β +4αβ- γ+ α-β C θ
2 3 2

1 -1 1 α γ 1 3 1 1+ Dθ-D θ + + - αθ- Dα θ+ βθ- Dγθ
C 360 6 48 36 6 4 6 3+D
θ 9 3+ + Dαθ - Dβθ -6Dθ
4 2 2

θ -

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎧ ⎫⎛ ⎞
⎢ ⎥⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭⎢ ⎥
⎢ ⎥⎧ ⎫⎢ ⎥⎨ ⎬
⎢ ⎥⎩ ⎭
⎢ ⎥⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠⎣ ⎦

6

4 2
2 3 2 2 2 2 2 2

2 2 6

2 3 3 4

7

α 1 γ 3 1 9 9 3- - α γ- +α θ- α βθ+αγθ- βγθ- α θ + αβθ - β θ
16 8 36 4 3 2 2 4+C DC
3- γθ +8αθ -6βθ -5θ
2

+ ( )

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

m

m

O m

 (4.7) 
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 The exact solution for a 1-D advection-diffusion problem is 

   2( , ) exp iκ( u ) κ D⎡ ⎤= − −⎣ ⎦q x t x t t  (4.8) 

The corresponding amplification factor is the ratio of solutions at two successive times 

computed at location x 

   2( , (n 1) )G exp(-iC -D ) 
( , n )

+
= =

q x t m m
q x t

 (4.9) 

and the associated TS is 

   

2 2 2 2
2 3 2

4 2 2 4 2 2 3
5 2 6 7

C C C D DG = 1-iC - D iC D C
2 6 24 2 2

C DC D C DC D D      -iC + + - C + + + ( )
120 6 2 720 24 4 6

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ + + + + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

m m m m

m m

4

+O m

 (4.10) 

 Thereby, the linear FE basis approximate solution phase error eh = G - Gh for any 

TWSh + θTS algorithm construction is analytically the difference between the exact and 

approximate solution TS expansions (4.10) and (4.7). Neglecting the D terms for the 

moment, as the theoretical focus is role of the TWS parameter set α, β, γ, θ and C in the 

absence of physical diffusion, any approximate solution phase error in non-dimensional 

wave number m space to seventh order is 
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( ) ( ) ( )

( ) ( )

2 2
2 3 3

FE( =1)

2 2
2 2 2 2 3

4
2

C 1 1 γ = - 1-2θ+ α-β +i - α α-β - - -α+β θ-θ C
2 6 4 6

C β α γ β 3 1 1 3      +C + -C -α+β + -α+ α α-β + β + γ θ+ -α+β θ +θ
24 24 8 6 2 4 4 3 2

C 1 -αβ γ βθ- - -C + +
120 180 48 72 12

      +iC

⎡ ⎤⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞+⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

⎛
⎝

h
k

me m

m4

( )

( )

( )( )

3 2
4

3 2
4 4 2 5

4 3 4

4
2

2       +

-α αγ α β γ-C α-β - - -
16 4 2 3 36

α αβ α β -3α 3β 3β γ-C θ - 3α-β +γ - -C θ α- - -
2 4 2 3 2 2 4 2

-C 2θ α-β -θ

C α β θ αβ α- + + - -C -θ
720 180 720 90 12 8

C

⎡ ⎤⎧ ⎫⎞ ⎛ ⎞
⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟

⎠ ⎝ ⎠⎩ ⎭⎢ ⎥
⎢ ⎥⎧ ⎫⎛ ⎞ ⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞⎢ ⎥⎨ ⎬ ⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠ ⎩ ⎭⎩ ⎭⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎛ ⎞
⎜
⎝

m

( )

( ) ( )

5 4 2 2
4

4 2
4 2

3 3
2 4

4 3 2

γ γθ βθ β- α-β + + +θ
72 36 8 3

α α β α γ α β γ β-C - + - + α-
32 32 4 3 4 24 3

-5α α β 3β γ 1-C θ + α- + -α α-β - β +γ
16 2 16 2 6

5α α β β 3β-θ C +9αβ - + - +γ α-
4 4 8 8 4

-1-C θ 5α +3β
2

⎧ ⎫⎛ ⎞
⎨ ⎬⎟ ⎜ ⎟

⎠ ⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞ ⎛ ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞ ⎛ ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞ ⎛ ⎞
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⎢ ⎥
⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥⎧ ⎫⎢ ⎥⎨ ⎬
⎢ ⎥⎩ ⎭⎣ ⎦

m m

(4.11) 

 Since the first order in m term is missing in (4.11), any choice for the TWSh+θTS 

parameter set α, β, γ, θ, C will produce a discrete solution at least first-order phase-

accurate for D ≡ 0. For guaranteed second-order phase accuracy, the m2 term coefficient 

[1+2θ+(α-β)] must vanish. For θ = 0.5, this accrues for any α = β and for all C. For this 

restriction on θ, third-order phase accuracy results upon setting -γ/6 – 1/12 = 0, hence the 

optimal choice is γ = -0.5.  For these θ and γ constraints, a fourth-order phase accurate 

solution results for α(1-C2)/24 = 0, which requires C = 1 or α = 0 = β.  
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 The theory predicts the optimally phase-accurate TWSh + θTS algorithm for 

linear FE basis implementation, herein denoted TWS-γ, accrues to the selections α = 0 = 

β, θ = 0.5 and γ = -1/2. Solutions generated with this TWS-γ algorithm are always fourth-

order phase-accurate on a uniform mesh, independent of C. Actual TWSh + θTS solution 

accuracy is of course a function of C and mesh non-uniformity.  

 As stated, the TWSh + θTS construction readily admits recovery of independently 

derived algorithms, be they finite element, finite difference or finite volume in the 

original derivation. Recalling Table 1.1, the Donea TG algorithm is obtained by the 

substitutions α = 0 = θ and β = 1 = γ in (4.1). From (4.11), solution optimal phase 

accuracy thus requires (1-C2)/24 = 0, which implies that greater than third-order accuracy 

occurs only for C = 1.  The Raymond-Garder (RG) and Jiang least squares (JLS) 

algorithms both result via non-zero α and β with γ = 0 and θ = ½.  The original RG 

construction defined α ≡ β and their semi-discrete (only) theoretical analysis [21] 

determined optimal phase accuracy accrued to α = 2/(C√15). Any JLS construction is 

recovered for the definition α = 2θ = β. These choices result in the third-order term 

coefficient fixed at –1/12, hence both original algorithms produce solutions that are at 

best second-order phase accurate. 

 Figure 4.2 summarizes wave-number order dependence of the theory TS 

coefficients for Courant numbers C = 0.25, 0.5 and 1.0. For C = 0.25 and 0.5 the 

predicted performance order is TWS-γ, TG, GWS, JLS, RG and CN. For C = 1.0, the 



performance order is TWS-γ, TG, RG, JLS, GWS and CN. Clearly then, TWS-γ is the 

predicted optimal linear basis FE implementation of the TWS + θTS theory. 

 Existence of the established TWSh + θTS theory admits the opportunity to 

optimize phase accuracy for published algorithms. For example, one can minimize the 

fourth-order truncation error coefficient C2(α-2C2)/24 while keeping α = β for RG and 

JLS. The results remain Courant number dependent, e.g., for C = 1, optimal α = β = 2, 

while for C = ½ the value is ½. A third example is the famous Crank-Nicolson (CN) FD 

algorithm, [22], the solution phase accuracy of which can be improved via TWSh + θTS.  

The fundamental distinguishing characteristic between linear basis TWSh + θTS FE 

implementation and CN is the FE non-diagonal mass matrix [M] in (3.3).  Diagonalizing 

[M], then proceeding through the amplification factor process produces  

   
( )

( ) ( )

2

CNm FD
2 2 2

3βC cos +1 -i3Csin
G 1+

-α3+γC +3θβC -C γ+3θβ cos +i3C +θ sin
2

− =
⎛ ⎞
⎜ ⎟
⎝ ⎠

h m m

m m
 (4.12) 

for the “modified” CN algorithm (CNm). The corresponding CNm algorithm phase error 

TS through third order is  
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( ) ( ) ( )

( )( ) ( )

2 2 2
CNm-FD

2
2 2 2 2 2 2

3 2
3 2 3

4

 = -2(C β)  -iC 1+ 1+C αβ-2C βθ

1 1 1 α γ   +C - - α-β - C βγ+θ 1-C β -2βC - - +θ α-β-θ
2 2 3 4 3

C C 5 γ 1 α γ   +i - +C - αβ- + βθ -C -C+C β α-2θ - - +θ α-β-θ
6 6 12 6 3 4 3

   +O( )

⎡ ⎤
⎣ ⎦

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

he m

m

m

m

3

(4.13) 

 Viewing (4.13), to obtain even first-order phase accuracy requires β = 0, 

whereupon the second-order TS coefficient becomes C2(-1/2+θ) which defines θ = ½, as 

in the original CN formulation. With these determinations, the third-order coefficient 

becomes C3(-1/12-γ/3) - C(1-Cγ)/6 which will not vanish for any γ or C. Optimal γ can be 

chosen for select C, e.g., for C = 1 optimal γ is –1/2, while for C = ½ third-order phase 

accuracy is independent of γ. 

 Finally, any TWSh + θTS algorithm when optimized for phase accuracy exhibits 

discrete approximation error eh that is a function of non-dimensional wave number m. 

Recalling (1.1), the relative phase velocity of the analytical solution is unity for all wave 

numbers. The wave number dependence of the relative phase velocity is computable in 

terms of the real and imaginary components of the amplification factor as 

   11 Imag(Gtan
C Real(G

− ⎛
Φ = ⎜− ⎝ ⎠

h
h

hm
)
)

⎞
⎟  (4.14) 
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 For the six TWSh + θTS algorithms considered, the solutions (4.14) are graphed 

in Figure 4.3 (a) for C = 0.5. Note the use of a semi-log abscissa scale to expand 
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resolution in the all-important short wavelength region. Except for TG, which exhibits 

zero dependence on wavelength λ, all TWSh + θTS algorithms exhibit lagging phase 

error over all λ and 100% error at λ = 2h. In the interval 2h <λ ≤ 3h, JLS and RG exhibit 

the minimal error but thereafter lose comparative superiority. CN exhibits the largest 

phase error throughout, and the TWS-γ phase error is minimal for all λ > 4h (except for 

TG). 

 The terminal theoretical issue is algorithm stability, which requires |Gh| ≤ 1. For 

the exact solution |G| = 1. Appendix III details the determined spectral distribution of the 

TWSh + θTS algorithm error modulus |eh| = |Gh| - |G|. Figure 4.3 (b) graphs the solutions 

for amplification factor modulus error for the considered algorithms. GWS, TWS-γ and 

CN exhibit zero error for all wavelengths, since they possess no numerical diffusion. At λ 

= 2h the modulus error for TG is 100% and 87% for JLS and RG. Thereby, the superior 

short wavelength phase error character of these algorithms comes at the expense of a very 

large level of numerical diffusion. 

 To further validate the theory, error analysis is extended for the 1D advection-

diffusion problem. TS error statement in the orders of m is obtained from (4.7) and 

(4.10). Interestingly, m2 error term is independent of D and is equal to C2[ ½ + ½(α-β)-θ]. 

Clearly, to obtain second order phase accurate solution requires α = β, for θ = ½. 

Substitution of these values to third order error term gives a requirement of γ = -1/2 for 

error annihilation. Hence, again as in 1D pure advection, γ = -1/2 is the optimal value for 



1D advection-diffusion and suggests direct extension of the theory to the advection-

diffusion class of problems. 

 

4.1.2. Quadratic Basis 

 Theoretical analysis using one dimensional FE quadratic basis is much more 

complex because due consideration is required for the non-vertex node, c.f. Figure 4.1(b). 

The procedure followed is given by Gresho [15]. For non-vertex nodes seek a solution in 

the form 

   j
i ( j t)e κ −= φ h cQ  (4.15) 

that is similar to (4.3)-(4.4), where j represents the nodal location as shown in Figure 

4.1(b), and φ is the ratio of amplitude at non-vertex node to vertex node. For vertex nodes 

seek a solution in the form of 

   j
i ( j t)e κ −= h cQ  (4.16) 

Distinct matrix elements for (3.5), assembled at generic node Xj and dividing by a factor 

1/3 to convert into finite difference form for vertex nodes are 

   1[A200Q] 1 2 8 2 1
10

⇒ − −  
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   1[A201Q] 1 4 0 4 1
2

⇒ − −  

   1[A211Q] 10 80 140 80 10
10

⇒ − −  (4.17) 

Similarly, for non-vertex nodes assembling at generic node Xj and dividing by a factor 

2/3 to convert into finite difference form gives 

   1[A200Q] 1 8 1
10

⇒  

   [A201Q] 1 0 1⇒ −  

   [A211Q] 4 8 4⇒ − −  (4.18) 

From (3.5), writing the algebraic statement explicitly  

  

2 2

2

C C C[JAC] [A200Q] [A201Q] [A211Q] C[A201Q] [A211Q]
2 6 2

C[RES] C[A201Q] [A211Q]
2

α γ θβ
= − + + θ +

β
= − −

 (4.19) 

Computing phase velocity requires inserting the trial solution (4.15)-(4.16) into TWSh + 

θTS algebraic formulation (4.19), for (4.1), at the generic mesh node Xj. For vertex nodes 

nodes, coefficients of [JAC] in (4.15), herein referred LHS identifying left hand side in 

(3.5), for a semi-discrete TWSh algorithm is 
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i2m im im i2m

i2m im im i2m

2
i2m im im i2m

i2m im im i2m

2
i2m im im i2m

iLHS e 2 e 8 2 e e
10

i C e 4 e 4 e e
4

i C e 8 e 14 8 e e
6

i C e 4 e 4 e e
2

i C e 8 e 14 8 e e
2

− − + +

− − + +

− − + +

− − + +

− − + +

ω ⎡ ⎤= − − + φ + + φ −⎣ ⎦

ωα ⎡ ⎤+ − φ + φ −⎣ ⎦

ωγ ⎡− − φ + − φ +⎣

ωθ ⎡ ⎤− − φ + φ −⎣ ⎦

ωθβ

⎤⎦

⎡ ⎤− − φ + − φ +⎣ ⎦

 (4.20) 

where ω is cyclic frequency. Similarly, coefficients of [RES] in (4.19), herein referred as 

RHS, identifying right hand side in (3.5) is 

   

i2m im im i2m

2
i2m im im i2m

CRHS e 4 e 4 e e
2

C e 8 e 14 8 e e
2

− − + +

− − + +

⎡ ⎤= − − φ + φ −⎣ ⎦

β ⎡ ⎤− − φ + − φ +⎣ ⎦

 (4.21) 

Rewriting (4.20) – (4.21) in terms of trigonometric functions, cosines and sines, yields 

   

[ ]

[ ]

[ ]

[ ]

[ ]

2

2

iLHS 2cos(2m) 4 cos(m) 8
10

i C i2sin(2m) i8 sin(m)
4

i C 2cos(2m) 16 cos(m) 14
6

i C i2sin(2m) i8 sin(m)
2

i C 2cos(2m) 16 cos(m) 14
2

ω
= − − + φ +

ωα
+ − + φ

ωγ
− − φ

ωθ
− − + φ

ωθβ
− − φ

+

+

 (4.22) 

and, 
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[ ]

[ ]2

RHS iC isin(2m) 4 sin(m)

C cos(2m) 8 cos(m) 7

= − − + φ

−β − φ +
 (4.23) 

Since LHS = RHS, combining (4.22) and (4.23), and dividing by “i= 1− ”, gives 

 

[ ] [ ]

[ ] [ ]

[ ]

[ ] [

2

2

2

C2cos(2m) 4 cos(m) 8 i2sin(2m) i8 sin(m)
10 4

C C2cos(2m) 16 cos(m) 14 i2sin(2m) i8 sin(m)
6 2

C 2cos(2m) 16 cos(m) 14
2

C isin(2m) 4 sin(m) i C cos(2m) 8 cos(m) 7

ω ωα
− − + φ + + − + φ

ωγ ωθ
− − φ + − − + φ

ωθβ
− − φ +

= − − + φ + β − φ + ]

 (4.24) 

Similarly, for non-vertex nodes, inserting the trial solution (4.15)-(4.16) into (4.19) gives 

the coefficients of [JAC] identified by LHS as 

   

im im

im im

2
im im im

im im

2
im im

iLHS e 8 e
10

i C e e
2

i C 4e 8 e 4e
6

i C e e

i C 4e 8 4e
2

− +

− +

− + +

− +

− +

ω ⎡ ⎤= − + φ +⎣ ⎦

ωα ⎡ ⎤+ − +⎣ ⎦

ωγ ⎡ ⎤− − + φ −⎣ ⎦

⎡ ⎤− ωθ − +⎣ ⎦
ωθβ ⎡ ⎤− − + φ −⎣ ⎦

 (4.25) 

and coefficients of [RES] identified by RHS are 
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im im

2
im im

RHS C e e

C 4e 8 4e
2

− +

− +

⎡ ⎤= − − +⎣ ⎦
β ⎡ ⎤− − + φ −⎣ ⎦

 (4.26) 

Writing (4.25) – (4.26) in terms of trigonometric functions, cosines and sines, gives 

   

[ ]

[ ]

[

[ ]

]

[ ]

2

2

iLHS 2cos(m) 8
10

i C i2sin(m)
2

i C 8cos(m) 8
6

i C i2sin(m)

i C 8cos(m) 8
2

ω
= − +

ωα
+

ωγ

φ

− − +

− ωθ

ωθβ

φ

− − + φ

 (4.27) 

and, 

   
[ ]

[ ]2

RHS C i2sin(m)

C 4cos(m) 4

= −

−β − + φ
 (4.28) 

Since, LHS = RHS, equating (4.27) and (4.28), gives 

   

2 2

2 2

2 2

1 4 4 4cos(m) i Csin(m) C cos(m) C
i 5 5 3 3

i C2sin(m) 4 C cos(m) 4 C

          i2Csin(m) 4 C cos(m) 4 C

⎡ ⎤+ φ − α − γ + γ φ⎢ ⎥− ω⎢ ⎥
+ θ − θβ + θβ φ⎢ ⎥⎣ ⎦
= − + β − β φ

 (4.29) 

Rearranging (4.29), gives 
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2

2 2

2 2 2

2Csin(m) i4 C cos(m)
1 4cos(m) i Csin(m) C cos(m) i2 Csin(m) 4 C cos(m)
5 3

1 14 C C i4 C
5 3

⎡ ⎤+ β
⎢ ⎥

⎡ ⎤⎢ ⎥−ω − α − γ + θ − θβ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦φ =
⎛ ⎞+ γ + θβ ω + β⎜ ⎟
⎝ ⎠

 (4.30) 

To compute cyclic frequency ω, (4.30) is substituted into (4.24), and is solved in 

Mathematica, a symbolic toolbox. The resultant relation is some hundreds of lines of 

output and hence becomes mathematically intractable. Substituting α=0=β considerably 

simplifies the issue, but of course destroys the sought full theory. Substituting (4.30) in 

(4.24) results in a quadratic relation for ω, hence two roots exist. The principal root has a 

negative sign and the other is identified as spurious by Gresho [15], and Vichnevetsky 

and De Schutter [16]. The principal root as obtained using Mathematica is,  

  (4.31) 

ω= 

 For a semi-discrete algorithm (time remains continuous), phase velocity can be 

directly computed by dividing ω by κ, the wave number. For a finite time-step, the fully 

discrete phase velocity analysis is required, which is determined by computing Gh, the 
 35



numerical amplification factor. For a fully discrete scheme, Gh = 1-iωΔt, and is obtained 

directly from (4.31). Relative phase velocity is obtained by separating real and imaginary 

parts of Gh and using (4.14). Appendix IV shows the Matlab script for computing Gh and 

plotting the relative phase velocity spectral distribution. For explicit time integration, θ=0 

in (4.31) the relative phase velocity definition is  

   
2

1
2

Csin(2 ) Csin( ) 9 sin ( )1 tan
C 1 sin ( )

−
⎡ ⎤− + +

Φ = ⎢ ⎥
+⎢ ⎥⎣ ⎦

h m m
m m

m
 (4.32) 

 Figure 4.4 shows the relative phase velocity spectral error distribution for the θ = 

0 explicit time scheme at C=0.5 for γ = 0. The error is 100% at λ = 2h because of the 

inability of the mesh to resolve 2h wavelength spectral content. The error as expected 

asymptotes to zero for λ→∞. 

 Figure 4.5 graphs the phase velocity spectral error distribution for the GWS and 

TWS-γ for θ = ½ and various C and γ. Figure 4.5 (a) shows 100% error at λ=2h, as 

expected, and on 2h ≤ λ ≤ 6h, a smaller phase error results for TWS-γ than GWS, which 

is again expected . But for λ > 6h GWS phase error is less than TWS-γ, which is contrary 

to what has been seen from numerical experiments. Also, when λ→∞, the phase error 

remains in the range from 10-20%, which is obviously an error.  

 Another set of comparisons for the TWS-γ algorithm with γ = -0.2, -0.4 and -0.5 

at C=0.5 and C=1.0, are shown in Figure 4.5 (b)-(c). Numerical experiments indeed 
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determined that γ = -0.4 is optimal, but no definitive trend is seen from these relative 

phase velocity error analysis. Therefore, the approach of Gresho [15], when applied to 

TWS class of algorithms implemented with FE quadratic basis, possesses an apparently 

fatal restriction. Therefore, the state of the TWS-γ theory reported by Chaffin [23] 

remains the most general prediction available. 

 

4.2 Two-dimensions 

 The TWS modified conservation principle for a 2D pure advection problem, in a 

rectangular Cartesian resolution, neglecting the μ term and assuming Pa-1 = 0 is 

2 2

2
2

α( )
2 t

β
2

γ
6

⎡ ⎤∂ ∂ ∂ Δ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + + − +⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞Δ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− + + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞Δ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− + + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

m q q q t q qq u v u v
t x y x y t

t q q q qu uv vu v
x x x y y x y y

t q q qu uv vu
x x t x y t y x t

L

2 3+ (Δ )=0
⎡ ⎤⎛ ⎞∂ ∂
⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦

qv O t
y y t

(4.33) 

The amplification factor Gh for the discrete solution qh(x,y,t) for (4.16) is again 

determined via assembly of the TWSh + θTS algorithm at the generic mesh node Xj,Yk 

(ref. Figure 4.1(c)). The Fourier representations analogous to (4.3)-(4.4) are 

   Qj-1,k-1 = Q (x-Δx,y-Δy) = Qj,ke-iΔxκ
1e-iΔyκ

2 (4.34) 
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   Qj+1,k+1 = Q (x+Δx,y+Δy) = Qj,ke+iΔxκ
1e+iΔyκ

2  (4.35) 

where κ1 and κ2 are the non-D wave numbers in the x and y directions respectively. The 

resultant TWS algorithm 2D amplification factor, for the bilinear FE basis 

implementation is 

( ) ( ) ( )
( ) ( ) ( )

1 1 2 1 1 1 1

1 1 2 1 1 1 1

i i i i i i i
j-1 j j+1 j-1 j j+1 j-1 j j+1

i i i i i i i
j-1 j j+1 j-1 j j+1 j-1 j j+1

2

2

i

i

b e b +b e e b e b +b e b e b +b e e
G =

a e a +a e e a e a +a e b e b +b e e

− κ + κ − κ − κ + κ − κ + κ + κ

− κ + κ − κ − κ + κ − κ + κ + κ

+ + + + +

+ + + + +
h (4.36) 

for wave number definitions κ1 = κcosη and κ2 = κsinη, recall Figure 1.1. 

 The theoretical analysis is tractable only for the uniform mesh case, hence κ1Δx = 

m = κ2Δy, thereby Δx ≡ h ≡ Δy in (4.34)-(4.35), and m remains the non-dimensional 

wave number. The resultant Taylor series expansion for Gh to order m4 is detailed in 

Appendix V.  The exact solution for a 2D pure advection problem is  

   ( ) ( ){ }1 2( , , ) exp i κ κ⎡ ⎤= − − + −⎣ ⎦xq x y t x u t y u ty  (4.37) 

for advection velocity vector resolved into Cartesian scalar components. The analytical 

amplification factor remains the ratio of two successive time interval solutions 

   n 1

n

( , , )G
q( , , )

+=
q x y t

x y t
 (4.38) 

Alternatively, since κ1 = κcosη and κ2 = κsinη  
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   ( )x yG exp i C cos C sin⎡ ⎤= − η + η⎣ ⎦m  (4.39)  

where Cx and Cy denote the Cartesian resolution of the Courant number vector.  The 

resulting TS expansion to the first three terms in order m is 

   

2 2
x y x y

3 3 4
x y

1G = 1 - i[C cos(η)+C sin(η)] - [C cos(η)+C sin(η)]
2

i   + [C cos(η)+C sin(η)] + ( )
6

m m

m O m
  (4.40) 

 The TWSh + θTS algorithm phase-dependent error remains eh ≡ G - Gh, which is 

readily computed from the TS expansions, and is detailed in Appendix VI to the order m4. 

As before, stability accrues to bounding of |eh| = |G| - |Gh| by unity. Since |G| = 1, then |eh| 

= 1 - |Gh| and the resultant solution to order m2 is  

   ( )( )
22
y 2 2 2 2x

x y x y x y x x y y

CC 1| | = +C C + - α+β C +C -αC C -C θ-2C C θ-C θ
2 2 2

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

he m2  (4.41) 

From (4.41), it is clear that the phase-dependent error for any TWSh + θTS algorithm 

with definitions α = 0 = β and θ = ½ will be order m3 or better. 

 It remains to probe the TS analysis to quantify phase angle dependence, recall 

Figure 1.1, hence Courant vector dependence. Figure 4.6 presents the sample space of 

wave vector angles η = π/2, 5π/8, 3π/4, π, 5π/4 and 11π/8, along with geometric 
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coordinates, as determined definitive in spanning the Courant vector magnitude range 

0.19 ≤ |C| ≤ 0.41 associated with a validation problem, discussed later. 

 The theory predicts that solution error is angular quadrant independent, even 

though C = (rωΔt/h)ê is indeed a vector, where ω is angular velocity and ê is the unit 

vector tangent to the η direction. This prediction is in agreement with observations by 

Christon et. al. [13]. Figure 4.7(a)-(c) graphs the comparative TS coefficients in orders of 

non-dimensional wave number m, as predicted for the range of TWSh + θTS algorithms 

evaluated, at η = 3π/4 and for 0.19 ≤ |C| ≤ 0.41. Figure 4.8 (a)-(c) present similar data for 

η = 5π/8.  The lead error terms for RG, JLS and TG are order m2 for all η and |C|.  The 

lead error terms for GWS, CN and TWS-γ are all order m3, as predicted.   

 Since such a large disparity exists on order m3 TS coefficient magnitude for CN 

versus GWS and TWS-γ, Figures 4.7 (d) and 4.8 (d) graph only these data for direct 

comparison. As algorithm solution fidelity is dominated by the lowest order in m non-

vanishing TS coefficient, the theory predicts the TWS-γ algorithm optimal, as this 

coefficient is from 1/2 to 1/5 that of GWS. The same comment holds for the m4 

coefficients, while the m5 coefficient being small and nominally identical is of marginal 

practical impact. As the final caveat, both TWS-γ and TG algorithm TS order m3 

coefficients vanish for η aligned with a coordinate axis.  

 TWS-γ exhibits the minimum TS coefficient for all m, η, |C| and coordinates 

tested. Thereby, the theory again predicts that TWS-γ algorithm solutions will be 



optimally accurate among those of the group, hence there exists little incentive to further 

consider RG, JLS or CN. As a final comparison, Figure 4.9 quantifies the TS phase 

accuracy order distinction predictions for GWS versus TWS-γ on π/2 ≤ η ≤ 3π/4 and 

extremum |C|. Note the zero TS coefficients for orders m3 and m4 for the TWS-γ 

algorithm for η=π/2. Predicted solution fidelity dependence on |C| is clearly evident, 

comparing the data in Figures 4.7 – 4.9, with the lead order TS coefficient magnitude 

roughly three times larger at |C| = 0.41 than at |C| = 0.19. 

 

4.3 Matrix stability analysis  

 Any CFD algorithm produces the matrix statement 

   [A]{Q}n+1 = [B]{Q}n (4.42) 

For the TWS 1D pure advection problem, writing (3.11) in the form of (4.41) gives 

  

2 2
n 1

2 2
n

C C C[A200 ] [A201 ] [A211 ] C[A201 ] [A211 ] {Q }
2 6 2

C C C[A200 ] [A201 ] [A211 ] (1 ) C[A201 ] [A211 ] {Q }
2 6 2

+⎧ ⎫α γ θβ
− + + θ +⎨ ⎬

⎩ ⎭
⎧ ⎫⎛ ⎞α γ β⎪ ⎪= − + − − θ +⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

d d d d d

d d d d d
(4.43) 

Assembling at the node common to two elements, and using the matrices as identified in 

(3.12), gives [A] as  
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2 2 2 2

2 2 2 2 2
2

2 2 2 2

1 C C C C 1 C C C C 0
3 4 2 6 2 6 4 2 6 2
1 C C C C 2 C 1 C C CC
6 4 2 6 2 3 3 6 2 6 2

1 C C C C 1 C C C C0
6 4 2 6 2 3 4 2 6 2

⎡ ⎤α θβ γ θ α θβ γ θ
+ + + − − − − +⎢ ⎥

⎢ ⎥
⎢ ⎥α θβ γ θ γ θβ γ θ

+ − − − + θβ + − − +⎢ ⎥
⎢ ⎥

α θβ γ θ α θβ γ θ⎢ ⎥
+ − − − − + + +⎢ ⎥⎢ ⎥⎣ ⎦

 

and matrix [B] is 

2 2 2 2

2 2 2 2 2
2

2 2 2 2

1 C (1 ) C C (1 )C 1 C (1 ) C C (1 )C 0
3 4 2 6 2 6 4 2 6 2
1 C (1 ) C C (1 )C 2 C 1 C (1 ) C C (1 )C(1 ) C
6 4 2 6 2 3 3 6 4 2 6 2

1 C (1 ) C C (1 )C 1 C (1 ) C C (1 )C0
6 4 2 6 2 3 4 2 6 2

⎡ α − θ β γ − θ α − θ β γ − θ
+ − + + − + − −⎢

⎢
⎢ α − θ β γ − θ γ α − θ β γ − θ

+ + − + − − θ β + − + − −⎢
⎢

α − θ β γ − θ α − θ β γ − θ⎢
+ + − + − − + −

⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥⎢ ⎥⎦

 

If [A] is invertible, then {Q}n+1 = [A]-1 [B]{Q}n . Stability analysis can now be performed 

by determining the spectral radius, c.f., Ames [24], and Wait and Mitchell [25], defined 

as the largest eigenvalue of the matrix [A]-1 [B]. Also, if each eigenvalue of the matrix 

has magnitude less than unity then the algorithm will produce stable results. 
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Chapter 5 

5. Discussion and Results 

 A list of tested algorithms is given in Table 5.1. All algorithms are derived from 

TWS theory by choosing appropriate identifications for α, β, γ and θ, except CN, which 

requires the mass matrix to be diagonalized. TWS represents a Taylor weak statement 

algorithm with extensions TWS-α/β/γ to identify the specific constructions. 

 

5.1. Pure advection, one dimensional scalar transport  

 The m-dependent spectral distribution of phase velocity and amplification factor 

modulus errors has been determined for TWSh + θTS algorithms; namely, GWS, RG, 

JLS, TG, TWS-γ and CN, for 0.25 ≤ C ≤ 1.0 and time integration implicitness factor θ = 

0.5, except TG for which the original θ = 0 definition is retained. Algorithm relative 

actual performance is assessed for the verification problem of propagation of smooth and 

non-smooth initial conditions (IC) by a constant imposed velocity. The smooth IC is a 

Gaussian while the non-smooth IC is a square wave.  

 

 For the Gaussian propagated over three IC wavelengths, TWSh + θTS algorithm 

solutions are compared to the exact solution in Figure 5.1 for C = 0.5 = θ, except TG 

which retains θ = 0. Clearly, the best solution in the visual eyeball norm is TWS-γ, 
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followed in order by TG, GWS, RG, JLS and CN respectively. Note that even though TG 

possesses zero phase error, it performs just poorer than TWS-γ due to its large level of 

numerical diffusion. RG and JLS phase velocity and amplitude error distributions are 

very similar, hence also is their performance. The developed theory, detailed in Section 

4.1, precisely predicts this relative performance. 

 The theory predicts that solution quality improves/degrades for solution 

propagation at Courant numbers lesser/greater than C=0.5. Figure 5.2 summarizes 

Gaussian IC propagation compared to the exact solution for C = 1. Except for TWS-γ and 

TG, solution fidelity for the remaining algorithms indeed degenerates in the eyeball 

norm, with CN the worst performer.  The theory predicts higher order phase accuracy for 

both TWS-γ and TG at C=1, and while not herein detailed, the TS process predicts at 

least tenth-order phase accuracy at C=1. Factually, both algorithms generate nodally 

exact solutions at C=1; this also occurs for the IC a (non-smooth) square wave, Figure 

5.3, or for that matter any other IC. 

 To quantify the visual results of Figures 5.1-5.2, Table 5.2 lists the computed 

nodal extrema for each algorithm tested for C = 0.5 and C = 1.0. Except TWS-γ and TG, 

algorithm performance degrades at larger C with additional loss of peak value and larger 

dispersion error-induced lagging phase error. Note that solutions generated via the TWS 

theory-optimized CNm algorithm are improvements over those generated by classical 

CN, Figure 5.4. Although the improvement is truly modest, that it is theoretically 

predicted is the key result. 



 

5.2. Algorithm automated optimization 

 The derived amplification factor error theory dependence on non-dimensional 

wave number m admits exploring automated optimization. The approach uses a fuzzy 

logic concept for a single-objective function, as enabled by an existing MATLAB 

optimization code, [26]. Only the first three coefficients in the theory TS expansion 

(4.11), for D = 0, are considered denoted as ,  and  in Table 5.3. The 

objective is to minimize these terms subject to the constraint  <  < since 

lowest order in m error annihilation is the primary objective. The code requires initial 

values for each parameter and the search seeks the nearest values to these that satisfy the 

objective function. Thereby, an endless set of determinations for α, β, γ, θ and C is 

possible. 

m2Eh
m3Eh

m4Eh

m2Eh
m3Eh

m4Eh

 Figure 5.5 summarizes solutions for smooth IC propagation as obtained using 

parameter set coefficients produced by the optimization code. All exhibit small phase and 

amplitude error, but none is an improvement over that of TWS-γ. The very practical 

constraint on optimization code execution is the convergence limit set for the objective 

function.  The requirement cannot be zero, and computer time is directly proportional to 

use of tighter limits. The selected convergence criteria were 1E-12, 1E-04 and 1E-03 

respectively, for ,  and  for the results graphed in Figure 5.5. m2Eh
m3Eh

m4Eh
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 Clearly, generating candidate optimal TWS solution parameter sets using 

optimization techniques depends totally on optimization code robustness. However, the 

truly interesting aspect of this exercise was code prediction of very large optimal 

coefficients α, β with values of θ < 0.5, which theoretically is unstable integration. For 

example, for C = 1 and initial guess α = 100 = β, γ = 0, θ = 0.5, the optimization process 

returned α = 100.048, β = 100.0532, γ = 0.27067, θ = 0.49743. Substituting these values 

into (4.11), the modest difference between α and β is compensated by the shift in θ < 0.5, 

which minimizes the m2 TS coefficient. For these values, γ = 0.27067 minimizes the m3 

TS coefficient. This parameter choice basically constitutes a modified RG and/or JLS 

algorithm. 

 

5.3. Advection-diffusion in one dimension 

 The one-dimensional advection-diffusion equation with constant velocity u and 

Peclet number Pe is 

 DP: 
2

2

1 ( ) 0
Pe

∂ ∂ ∂
= + − =

∂ ∂ ∂
L

q q qq u
t x x

 (5.1) 

This is a verification class problem with the analytical solution, for a smooth IC Gaussian 

distribution, given by Gresho [15] as, 
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2

0exp[ ( ) / 2(1 2 / Pe)]( , )
(1 2 / Pe)

− − − +
=

+
x x t tq x t

t
 (5.2) 

Figure 5.6 shows the Pe = 10 solution for the algorithms tested at time = 25 for C = 1. 

GWS and RG exhibit small amounts of lagging phase error. JLS in comparison to RG for 

C = 1, completely annihilates the dispersion error. Of significance both have 

contributions from the α and β terms, except that the coefficient values are larger for JLS, 

ref. Table 1.1. The TG solution is unstable and high frequency oscillations can be seen at 

time = 25. CN exhibits the largest dispersion error and a lagging phase error. TWS-γ and 

JLS are the best performing among the selected algorithms. The TWS-γ solution slightly 

over-predicts whereas JLS slightly under-predicts the peak compared to the exact value.  

 Figure 5.7 compares the solutions for Pe=1000, hence the problem is advection 

dominated making it numerically more challenging. Mathematically, the problem is 

gaining hyperbolic character, smaller Pe being parabolic. As detailed in the developed 

theory, Section 4.1, and the corresponding results in Section 5.1, we expect TWS-γ, (γ=–

0.5), to exhibit optimum solution fidelity, as is clearly validated in Figure 5.7. Table 5.4 

compares the extremum of the selected algorithms after 25 time-steps. For Pe=10, the 

performance order is TWS-γ/JLS, RG, GWS, CN and TG, whereas, for Pe=1000, the 

performance order is TWS-γ, TG, GWS, RG, JLS and CN. This is identically the trend 

observed for pure advection problem, as expected. 
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 Numerical experiments were also performed for Pe = 10 and 1000 at C=0.5. All 

algorithms, as expected show an improved performance, hence the results are not shown. 

Notably, TG which was unstable for C=1.0 and Pe =10, now performs second to TWS-γ. 

These experiments highlight the limitation of the TG algorithm being time explicit. 

 

5.4. One dimensional Burgers equation 

 The non-linear Burgers equation is a standard verification model for 

characterizing CFD algorithm candidates for the INS system. The number of grid points 

required to resolve a steep front for a GWS algorithm is directly proportional to the 

O(Re) [31]. For Re = 1E4, number of elements required are of O(104), which is not 

practical. Hence, an alternative algorithm to GWS is required with the range of those 

tested to date as candidates. The goal is to choose a problem specification that serves as a 

good example for testing the robustness of any candidate algorithm. DP and the selected 

smooth IC and Dirichlet BCs for one such verification case in 1D are 

   

2

2
1 D :    ( ) 0,   0 1,  t 0,

Re
IC :            u( ,0) 0.5sin( ) sin(2 ),   0 1
BC:           u(0, ) 0 u(1, ),                       t 0

∂ ∂ ∂
= + − = < < >

∂ ∂ ∂
= π + π ≤ ≤⎧ ⎫

⎨ ⎬= = ≥⎩ ⎭

L
u u uu u x
t x x

x x x x
t t

P  
 (5.3) 

Equation (5.3) is explicitly non-linear with viscous term impact controlled by Re The 

solution to (5.3) is a wave that steepens and forms a sharp front at time = 0.2. The wave 
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moves to the right as time advances and ultimately decays to zero because of the 

Dirichlet BCs. This Burgers specification has served as a validation case for many 

authors [27-29], especially for the computational scientists working on moving mesh 

techniques.  

 Analytical solution to (5.3) involves very complex mathematics [30], hence in 

order to get a reference solution a GWS simulation is done with M = 2000 and Δt = 

0.00035. The resultant solution replicates the exact result but with over and under-shoots 

for the nodes near the steep front, Figure 5.8 (a). For clarity of TWS algorithm solution 

comparisons, these oscillations are smoothed when graphed as the “exact solution”, 

Figure 5.8 (b) in the following discussion.  

The candidate algorithms are GWS, JLS, TWS-β, TWS-βγ, TWS-αβ and TWS-

αβγ. The choice of TWS-αβ algorithm originated from analyzing the TS expansion 

coefficients of numerical amplification factor (4.7). Coefficients of m2 term suggest a 

possible choice of optimal α/β as a function of physical diffusion parameter D. Figure 5.8 

(c)-(h)compares the solutions obtained for these linear basis algorithms for Re = 1E4 for 

an M = 200 uniform mesh, time-step = 0.05, θ = 0.5 and at times = 0, 0.2 0.6, 1.4, 2.0s. In 

each graph, the smoothed reference solution is shown as dashed lines. 

 GWS fails completely in resolving the problem and the solution blows up, Figure 

5.8 (c). Similarly, JLS, TWS-βγ and TWS-αβγ Figures 5.8 (d)-(f) are unable to resolve 
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the steep front developed after time = 0.2 and this inadequacy completely pollutes the 

solution for times greater than 0.2.  

 TWS-β for β=1, and TWS-αβ, for β=1, α=-0.25 at θ = 0.5, Figures 5.8 (f), (g) are 

much more successful in resolving the steep front but dispersion error oscillations 

remain. Notable also is that these algorithms under-predict the speed of the steep front for 

t > 0.2, which is due to the under-prediction of the upstream wave velocity on this coarse 

mesh. The TWS numerical diffusion β-term is essential for damping the dispersive 

oscillations, which persist even for β=1. Combining β with α = -0.25 and the optimal γ=-

0.5 term worsens the solution, Figure 5.8 (h). But when combined only with the α-term, 

oscillations are damped and hence yield an improved solution. Note that α and γ terms 

are both corrections to the TWS mass matrix, with α term an altered convection matrix 

whereas the γ term is associated with a diffusion matrix. 

 These TWS-β and TWS-αβ, θ = 0.5 algorithms gave the best solutions, but 

residual oscillations remained. Hence, a set of computational experiments were made to 

assess options for annihilating these residual oscillations. The end result was a newly 

developed numerical technique, which uses the standard θ = 0.5 formulation for the 

physical, and α and γ terms in the modified equation (2.7), but it uses θ = 1.0 (fully-

implicit) formulation for the TWS-β term.  

 The results for select TWS algorithm tests are summarized in Figure 5.9 for the 

progression a) α = 0 = γ, β = 1, b) α = 0, β = 1, γ = -0.5, c) α = -0.25, β = 1, γ = 0 and d) 



α = -0.25, β = 1, γ = -0.5. These numerical experiments indicate the “best” values for β 

and γ are 1 and -0.5 respectively with θ = 1.0. TWS-γ (γ = -0.5) when combined with 

TWS-β (β = 1) smoothens the slight over-shoot predicted by TWS-β and sharpens the 

steep front in closer agreement with the exact solution. The α-term has the similar effect 

as the γ-term on steepening the front but appears comparatively less effective for the 

tested range. This modified TWS-αβγ formulation still under-predicts the steep front 

velocity for all time > 0.2, which remains the consequence of use of the coarse M = 200 

uniform mesh.  

 

5.5. Pure advection two dimensional scalar transport 

 The classic 2D verification is the rotating cone, [32], a pure advection problem 

defined on a square solution domain Ω. On domain boundary segments ∂Ω experiencing 

inflow, the BC is q(xb) = qb = 0. Conversely, on segments with outflow the BC is the 

homogeneous Neumann constraint ˆ = 0q⋅ ∇n . The IC is q(x,to) = 0 = q(xb) everywhere 

on Ω∪∂Ω except for an isolated gaussian distribution of mass fraction. Figure 5.10 

presents the IC in perspective view, which is advected along a circular path by imposition 

of the solid body rotation velocity vector field u(x,y) = u(r) = rωêθ. Here, r is the radial 

coordinate with origin at the center of Ω, ω is the angular velocity and êθ is the unit 

vector tangent to the angular direction. The corresponding Courant vector C = 
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Cêθ=√(C2
x+ C2

y) êθ is a linear function of radius r; the Cartesian resolution Cx, Cy of 

which are linear functions of the opposing Cartesian coordinate. 

 For the rotating cone, the IC is identically the analytical solution following any 

translation by the solid body rotation. Figure 5.11 graphs in perspective the various TWSh 

+ θTS algorithm solutions, as generated for the FE bilinear basis implementation, after 

the precise time required for the analytical solution to complete one revolution. In each 

graph, the ‘×’ denotes the analytical solution peak after one revolution. The magnitude of 

Courant vector at the centroid of the IC is |C| = 0.3 and the mesh is uniform rectangular 

Cartesian. In the eyeball norm the best performer is TWS-γ regarding peak preservation 

with minimal dispersion error-induced wake magnitude. The GWS and TG solutions 

follow with both suffering considerable peak loss, GWS due to dispersion error and TG 

due to numerical diffusion. The RG and JLS algorithms generate complete distortion of 

the IC due to the combination of dispersion and diffusion errors. The CN solution suffers 

rampant dispersion error due to its low order phase accuracy. 

 As confirmed by these data, only TWS-γ, GWS and TG, in that order, remain 

relevant algorithms. An algorithm is robust only when it maintains its predictability for 

different types of meshes. Hence, further analysis based on eyeball assessment is 

performed with non-uniform Cartesian mesh and a regular triangular mesh. Figure 5.12 

graphs the non-uniform Cartesian mesh of M=32x32 and the results for TWS-γ, GWS 

and TG algorithms. There was a significant degradation in the performance of all 

algorithms. But TWS-γ remains the best with an extrema of 91.8 and -15.0 after one 



complete rotation. GWS performance followed TWS-γ and TG was the worst in terms of 

peak value extrema. Recall the theory predicts that TG has a very small dispersion error, 

which is totally compromised by excessive artificial diffusion. 

 Next, algorithm robustness is tested on uniform triangular mesh. Finite element 

domain of the Figure 5.11 rectangular Cartesian mesh was uniformly bisected into two 

triangles, which enabled TWSh + θTS algorithm implementation using the FE linear 

natural coordinate basis. Figure 5.13 graphs the associated solutions in perspective 

following the time for one IC revolution. Each algorithm suffers a modest degradation in 

accuracy, as detailed in Table 5.5 in terms of extrema nodal values. In both the tabulated 

data, and in the eyeball norm, the theoretically predicted optimal TWS-γ algorithm 

remains the best performer. 

 

5.6. Gaussian plume advection-diffusion with source  

 A verification problem for computing the dispersion of air pollution from a single 

point source is the Gaussian plume model, originally proposed by Sutton [33]. The PDE 

defining the physics in 2D with uni-directional diffusion along the y-axis and constant 

imposed velocity along the x-axis is 

   1( ) 0 
Pe

⎛ ⎞∂ ∂ ∂
= − −⎜ ⎟∂ ∂ ∂⎝ ⎠

L
q qq u s
x y y

=  (5.4) 
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The analytical solution is given by Heines and Peters [34] for an infinite line source 

   
2u( , ) exp

4u
⎛ −

= ⎜ νπν ⎝ ⎠

⎞
⎟

s yq x y
xx

 (5.5) 

Dobbins [35] has given the Gaussian model for the turbulent dispersion and for multiple 

point sources with arbitrary velocity. Mayhoub et. al. [36] have developed analytical 

models for different atmospheric conditions. To derive the point source relation from the 

line source (5.5), a factor was chosen for source based on mesh size. For M = 20x20, a 

factor of 40 is chosen, whereas for M = 80x80, a factor of 86.4 is chosen. 

 Steady state GWS algorithm solutions are obtained for (5.4) on a unit square (0 ≤ 

x ≤ 1, -0.5 ≤ y ≤ 0.5). The point source is applied on first node off (x,y) = (0,0). The 

parameter values chosen are s = 0.00375, Pe = 100 and u = 1. Figure 5.14 shows the 

GWS solutions for M = 20x20 and 80x80 meshes and the TWS solution for M = 20x20. 

The analytical solution is overlaid at the boundary (1,y). With M = 20x20 a GWS error of 

2.25% is predicted whereas M=80x80 predicts 0.04% error at the center, i.e., at 

coordinate (1,0), when compared with the analytical solution. The simulation is repeated 

with TWS-β (β=1) for M = 20x20. An error of 0.0446% is obtained at coordinate 

location (1,0), which is close to GWS solution of M = 80x80, and clearly demonstrates 

the improved solution accuracy of TWS-β algorithm for a steady problem. A very small 

amount of dispersion error is also present near the point source. The minimum values for 
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the two algorithm solutions for M = 20x20 is -0.0028 for the GWS and -0.003 for TWS, 

both of which are considered of no practical significance.  

 

5.7. Thermal cavity Navier-Stokes problem 

 Final assessment of the TWS theory employs a full NS validation problem. 

Selected is the 8x1 aspect ratio thermal cavity enclosure, Figure 5.15, since significant 

multi-scale spectral content accrues to laminar flow as a function of Rayleigh number, 

Ra. Experimental data confirm this problem transitions from steady to unsteady [37] at a 

critical Rayleigh number, the occurence of which is computationally validated [38]. 

Christon et. al. [39] collected the results of various numerical models, confirming the 

critical Rayleigh number in the vicinity of Rac ≈ 3.1E+05. A flow-field with Ra > Rac 

gives unsteady flow with interesting flow features like vertical and horizontal boundary 

layers, corner structures, and shedding and multi-scale eddies, and hence is considered an 

excellent test case for the moderation of dispersion error via the TWS-γ algorithm.  

 Numerical experiments were performed for Ra = 3.4E+07 and Ra = 3.4E+08 to 

analyze the γ-term effect. TWSh + θTS applied on (2.8) gives the algebraic computable 

form, with the algorithm template given in Appendix X. The thermal cavity enclosure, 

Figure 5.15, is eight unit lengths tall and one unit length wide. The left and right walls are 

kept at a constant temperature  and  respectively, while the top and bottom of the 

cavity are insulated. The enclosure is subjected to the gravitational body force operating 

hotT coldT

 55



in the y direction. This natural convection problem is driven by buoyancy, hence it is 

appropriate to non-dimensionalize the PDE system (2.1)-(2.3) with a reference velocity 

based on the temperature difference between the two walls. Hence  is defined as, [rU 40] 

   β= ΔrU g TrW

d

 (5.6) 

where , and W is the width of the cavity This definition relates the 

Reynolds number directly proportional to the square root of Ra [

r hot colT T TΔ = −

39], defined as, 

   
3

2

gRa
Pr

βΔ
=

α
TW  (5.7) 

where α is the thermal diffusivity. The Prandtl number for all numerical experiments is 

constant at . Pr 0.71=

 A non-uniform Cartesian mesh of M = 41x201 elements, Figure 5.16, consists a 

coarser mesh in the domain center transitioning to a finer mesh near the boundaries. A 

finer mesh near the boundaries is required to capture the boundary layer formation 

induced due to buoyancy driven flow. The initial condition for the simulation was the 

solution obtained after 8000 GWS algorithm integration time steps, t = 148 sec at Ra = 

3.4E+06. Since the objective was to quantitatively assess the γ-term effect this solution 

was then restarted at a fixed constant time-step of Δt = 0.02, for both the GWS and TWS-

γ algorithms. 
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 Figure 5.17 compares a snapshot of the unsteady solution temperature distribution 

after 1500 time steps, time = 168 sec for the GWS and TWS-γ (γ=-0.5) solutions at Ra = 

3.4E+07, hence Re = 6850. The flow-field is unsteady and can be seen from the large 

number of eddy structures. Large number of eddies are concentrated near the center 

region. The thermal boundary layer is very thin, and wall shedding in the boundary layer 

is clearly visible above the mid-plane region. The GWS and TWS-γ solutions appear very 

similar. But on a closer look at the associated vortex structure the γ-term smoothning 

effect is clearly visible. Figure 5.18 graphs a close-up with mesh overlaid for the 

comparison of a recirculation region in the upper part of the domain and clearly 

visualizes the dispersion modulation characteristic of the TWS-γ algorithm.  

 This information can be quantified both theoretically, via the available asymptotic 

error estimate, (3.7), and in terms of the strength of the vortex structures, as measured by 

the span of the stream function. Figure 5.19 graphs the temperature energy norm 

distribution, with extrema near the wall boundaries in response to the thermal boundary 

layer, Figure 5.18. Mathematically notable is that just one order of magnitude difference 

in the extrema exist, identifying the equalization distribution of energy norm as 

suggesting the optimality of the mesh. The total scalar (Global) temperature energy norm 

values are compared, and tabulated in Table 5.6. TWS-γ solution results in the larger 

norm, a mathematical measure of moderation of dispersion error in this solution. 

 The close-up of the vortex structure for the re-circulation region in the lower part 

of the domain, as visualized by the stream-function distribution is presented in Figure 
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5.20. The γ term solution extremizes the stream-function range, as identified from the 

larger spread at the lower contour level, in this enlarged view. The stream-function 

extremization effect of the TWS-γ solution during time evolution is summarized in node 

point extremum values tabulated at select times in Table 5.7. At each time point, the 

TWS-γ solution extremizes the stream-function range. The point norm data are indeed 

small in magnitude, but importantly confirm independently, the temperature energy norm 

data. 

 The GWS and TWS-γ (γ=-0.5) temperature solutions at time = 168 sec for Ra = 

3.4E+08 and Re = 19,932 are compared in Figure 5.21. When compared with Ra = 

3.4E+07 solution, Figure 5.17, the number of small eddies have significantly decreased. 

The thermal boundary layer has become even thinner and wall shedding in the boundary 

layer occurs at a much shorter distance from the lower part of the domain. This pattern is 

also clearly identified in the temperature energy norm distribution, Figure 5.22. In 

comparison to the Ra = 3.4E+07 case, two new re-circulation regions have appeared near 

the upper left and lower right part of the domain, Figure 5.23. The measurable impact of 

the γ term on the Ra = 3.4E+08 temperature solution is less significant. Of fundamental 

importance however, small but definite increase in the global norm results, Table 5.6. 

The stream-function nodal extrema difference data are inconclusive for this Ra solution. 

 

 



 

5.8. Identified algorithm anomalous behavior 

 Select results presented in the Sections (5.1)-(5.2) identify what might be termed 

anomalous behavior for certain algorithms. Theoretical insight into these odd performers 

accrues to detailing the associated TWSh + θTS stencils. Recalling (4.1) as the general 

statement, both the TWS-γ and TG linear basis algorithms, when assembled at the generic 

node Xj for C = 1, produce (4.2) in the specific form 

   ( ) ( )j j 1 j j 1n 1 n+ +
+ = +Q Q Q Q −  (5.8) 

where n is the time-step index. Equation (5.8) states precise transport of nodal data 

exactly one mesh point at each time step on a uniform mesh for C=1 and for any IC.  

 Repeating this process for the RGm algorithm parameter set determination of the 

optimization process is similarly informative. Retaining arbitrary α = β, assuming γ small 

and setting θ = 0.5 yields (4.2) in the form 

n 1 n 1 n 1 n n n
j 1 j j 1 j 1 j j 1

1 2 5 5 2
12 2 3 2 12 2 12 2 3 12

Q Q Q Q Q+ + +
− + −

α α α α⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + + + − + = + + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

1 Q +  (5.9) 

For sufficiently large α (5.9) can be approximated as 

   n 1 n 1 n 1 n n n
j 1 j j 1 j 1 j j 1

1 1
12 2 2 2 2 12

Q Q Q Q Q+ + +
− + −

α α α α⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + + − ≈ + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Q +  (5.10) 
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which, upon term cancellation, predicts exact propagation of nodal data at C=1. Figure 

5.24 confirms this occurrence for α=100=β; the RGm and exact solutions are 

indistinguishable. 

 It is informative to generate the RGm, as well as all TWSh + θTS algorithm phase 

velocity and amplification factor modulus error distributions for C = 1. The TWS-γ, TG 

and RGm algorithms exactly propagate nodal data at C=1, and they each exhibit 

substantial leading phase error on 2h < λ ≤ 4h, which abruptly shifts to lagging at near 

zero levels for all wavelengths λ > 4h, Figure 5.25. The RG and JLS algorithms also 

exhibit this phenomenon, while GWS and CN exhibit lagging phase error at all 

wavelengths, none of which exactly propagate nodal data. 

 Any algorithm using a time-implicitness factor θ > 0.5 inherits stability due to the 

associated inherent numerical dissipation mechanism. An interesting case is C = 0.5 and 

θ = 1, for which the phase velocity and amplification factor modulus error distributions 

are graphed in Figure 5.26. The absolutely minimal phase error accrues to RGm; 

thereafter, in order of increasing phase error across the wavelength spectrum is TWS-γ, 

GWS, JLS, RG, TGm and CN.  (For this comparison only, the original TG definition θ = 

0 has been replaced with θ = 1 yielding TGm.)  The phase error distribution for TGm is 

equivalent to CN, which exhibits the minimal amplitude error. TG shows large amplitude 

error even at long wavelengths, while the GWS and TWS-γ amplitude errors are nearly 
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identical over the wavelength spectrum. It is quite apparent that these algorithm forms 

will not perform optimally. 
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Chapter 6 

6. Conclusions and Recommendations 

 The TWSh + θTS algorithm spectral theory, developed in completeness for the 

linear and bilinear FE basis implementations, provides a predictive framework for 

identifying optimal algorithm constructions belonging to the class. The generated TS 

expansion in non-dimensional wave number space is precisely predictive of actual 

computational performance, as verified for the selected scalar transport test cases.  The 

computed spectral distributions of phase velocity and amplification factor modulus error 

further confirmed the developed theory fidelity. The influence of Courant vector 

magnitude on solution quality is included in the theory, also wave vector angle 

dependency and angular quadrant independence.  

 A general formulation for the analysis of phase velocity for one dimensional FE 

quadratic basis for TWS class of algorithms is derived. The cyclic frequency was 

successfully determined for TWS algorithms. Subsequent computation for phase velocity 

becomes mathematically intractable because of the huge number of terms involved. 

Further, the approach available in the literature to determine phase velocity for FE 

quadratic basis has fatal restrictions when applied to TWS approach. TWS-γ relative 

phase velocity and its spectral distribution as determined from the available approach are 

documented for various γ  and Courant number. Hence, there is no incentive to pursue 

theoretical analysis for TWS α/β algorithm optimization. 
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 The theory predicted, and test case results for FE linear basis confirmed the 

superiority of the TWS-γ algorithm over other selected candidate algorithms for one and 

two dimensional advection-diffusion problems. It is fair to assume that this conclusion 

would hold for three dimensional pure advection-diffusion problems as well. 

 The theory suggested results are tested for one dimensional FE linear basis 

verification problems that include linear advection-diffusion and non-linear unsteady 

Burgers equation. The Burgers equation analyses lead to the potential for determination 

of optimal TWS-α/β/γ algorithms. Various improved performance results are 

documented with TWS-β (β=1), TWS-βγ (β=1, γ=-0.5), and TWS-αβ (α=-0.25, β=1). A 

new algorithm based on the standard TWS implicit formulation, except for β-term being 

fully-implicit was developed, and its superior performance for the Burgers equation 

solution is documented for TWS-α/β/γ algorithms. In addition, TWS-β results for steady-

state 2D advection-diffusion-source are presented showing improved solutions over 

GWS. 

 The theory predicted optimal TWS-γ results are tested on NS validation thermal 

cavity problem for above critical Rayleigh numbers and compared with GWS solutions. 

The results confirmed solution improvement and validated the TWS-γ algorithm 

dispersion error modulation characteristic. The scalar temperature energy norm was 

found to be quantitatively definitive for solution quality assessment with a larger value 

for TWS-γ algorithm. In addition, temperature energy norm equalization distribution 
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suggested the suitability of this mesh. Finally, TWS-γ algorithm solution also extremized 

the velocity field distribution as quantified by stream-function range. 

 TWS algorithm robustness and performance superiority over other algorithms on 

non-uniform Cartesian mesh and a regular triangular mesh is documented for two-

dimensional pure advection problem. It is reasonable to assume that mesh-independent 

relative performance superiority of the TWS-γ algorithm will be maintained for scalar 

transport associated with full NS problem statments. 

 Analysis of the numerical amplification factor TS expansion of the advection-

diffusion problem in non-dimensional wave-number suggests an interplay of α, β, θ, C 

and Re in solution quality. Numerical experiments with Burgers equation have confirmed 

a significant potential role of the α-term. Since, further analysis was beyond the scope of 

current work it is suggested that future research directions should look into the role of {α, 

β, Re, θ, C} parameters in solution improvement for the problem with physical diffusion. 

Further, the TWS standard implicit formulation with β-term fully implicit should be 

investigated for the full NS class of problems for minimizing residual oscillations, hence 

improving predictability for solutions exhibiting non-smooth behavior.  
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Table 1.1. TWS formulation categorization of independently derived CFD algorithms. 

Algorithm name θ α β γ μ 

TWSh+θTS all arbitrary arbitrary arbitrary arbitrary 

(Bubnov) Galerkin all 0 0 0 0 

Donor cell FD 0 0 u/C 1/C2 0 

Lax-Wendroff FD 0 0 sgn(u) 0 0 

Euler Taylor Galerkin 0 0 1 1 0 

CN Taylor Galerkin 0.5 0 0.5 1 0 

Euler Char. Galerkin 0 0 1 0 1 

Swansea Tay Galerkin 0 0 1 0 0 

Wahlbin 0 sgn(u) 2sgn(u) 0 0 

Dendy 0 Δx⋅sgn(u) Δx⋅sgn(u) 0 0 

Raymond-Garder 0.5 2vosgn(u)/C 2vosgn(u)/C 0 0 

Hughes SUPG --- 0 sgn(u) 0 0 

Euler Petrov Galerkin 0 0 0 (1-ν) 0 

CN Petrov Galerkin 0.5 sgn(u) v⋅sgn(u) -v/2 0 

Warming-Beam FD 0 0 1 0 -3(1-C) 

VanLeer MUSCL 1 0 sgn(u) 0 -3 

Jiang Least Squares all 2θ 2θ 0 0 

Note: sgn(u) is the sign of u, vo = 1/√15, C ≤ v ≤1, C is Courant number 
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Table 5.1. Summary of tested algorithms. 

Verification and Validation 

Problems  

Algorithms tested 

1D transient pure advection  GWS, CN, JLS, RG, TG, TWS-γ, CNm, RGm  

1D transient advection-

diffusion 

GWS, CN, JLS, RG, TG, TWS-γ 

1D transient non-linear 

Burgers equation 

GWS, CN, JLS, RG, TG, TWS-β, TWS-βγ, TWS-αβγ 

2D transient pure advection GWS, CN, JLS, RG, TG, TWS-γ  

2D transient advection-

diffusion with source 

GWS 

2D transient NS thermal 

cavity 

GWS, TWS-βγ 



 75

Table 5.2. Solution nodal extrema after 3-wavelength translation, Gaussian IC, 1-D pure 

advection. 

  Max Min 

GWS 0.9938 -0.0767 

RG 0.9385 -0.0508 

JLS 0.9398 -0.0516 

TG 0.9608 -0.0207 

TWS-γ 1.0087 -0.0210 

CN 0.8397 -0.3374 

C = 0.5 

CNm 0.8556 -0.3207 

GWS 0.9496 -0.1765 

RG 0.9194 -0.1458 

JLS 0.8988 -0.1171 

TG 1.0 0.0 

TWS- γ 1.0 0.0 

CN 0.7989 -0.3649 

C = 1.0 

CNm 0.8640 -0.3104 

 



Table 5.3. Amplification factor TS expansion coefficients in wavenumber space. 

Error TS Coefficients 

m2Eh  ( )
2C- 1+2θ+ α-β

2
⎡ ⎤⎣ ⎦  

m3Eh  ( ) ( ) 2 31 1 γ- α α-β - - -α+β θ-θ C
6 4 6

⎡ ⎤
⎢ ⎥⎣ ⎦

 

m4Eh  ( ) ( )
2 2

2 2 2 2C β α γ β 3 1 1 3C + -C -α+β + -α+ - α α-β + β + γ θ- -α+β θ -θ
24 24 8 6 2 4 4 3 2

⎡ ⎤⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

3
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Table 5.4. Solution nodal extrema after 25 time-steps, Gaussian IC, 1-D advection-

diffusion, Pe=10, 1000; C=1, M=40. 

 C = 1 

 Pe = 10 Pe = 1000 

 Max Min Max Min 

GWS 0.679990 -1.422E-02 0.966789 -1.4810E-01 

RG 0.674538 -5.207E-03 0.931993 -1.1942E-01 

JLS 0.681359 -9.816E-04 0.908791 -9.8639E-02 

TG 4.362461 -4.523E+00 0.996144 -5.8300E-06 

TWS-γ 0.689254 -6.042E-05 0.995248 -5.4484E-10 

CN 0.645886 -1.058E-01 0.833308 -3.4159E-01 

Exact 0.684000 0 0.995090 0 
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Table 5.5. 2D pure advection, algorithm nodal extrema after one rotation, |C| = 0.3 at IC 

centroid. 

      Uniform 

Cartesian Mesh 

Uniform non-

Cartesian triangular 

Mesh 

 α β γ θ |C| Max Min Max Min 

TWS-γ 0 0 -0.5 0.5 0.3 0.996 -0.052 0.984 -0.095 

GWS 0 0 0 0.5 0.3 0.960 -0.120 0.934 -0.148 

TG 0 1 1 0 0.3 0.863 -0.026 0.806 -0.039 

      Non-uniform 

Cartesian Mesh 

 α β γ θ |C| Max Min 

TWS-γ 0 0 -0.5 0.5 0.3 91.8 15.0 

GWS 0 0 0 0.5 0.3 88.1 19.6 

TG 0 1 1 0 0.3 76.4 -6.1 
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Table 5.6. Temperature global energy norm, Ra = 3.4E+07 and 3.4E+08. 

 Temperature 

Energy Norm 

Ra = 3.4 E+07, Re = 6850 γ = 0 6.63116E-05 

Ra = 3.4 E+07, Re = 6850 γ = -0.5 3.33277E-04 

Ra = 3.4 E+08, Re = 19,932 γ = 0 2.086058E-07 

Ra = 3.4 E+08, Re = 19,932 γ = -0.5 2.086188E-07 
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Table 5.7. Stream-function extrema, Ra = 3.4 E+07. 

Ra = 3.4 E+07, Re = 6850 

Time(s) Min Max 

γ = 0 -0.0795979 0.00114737 
1.40E+02 

γ = -0.5 -0.0795983 0.00114807 

γ = 0 -0.0808421 0.002806 
1.49E+02 

γ = -0.5 -0.0810310 0.003354 

γ = 0 -0.079579 0.0011473 
1.50E+02 

γ = -0.5 -0.079786 0.0018510 

γ = 0 -0.0687447 0.0004458 
1.63E+02 

γ = -0.5 -0.0704804 0.0012224 
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Figures 
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Figure 1.1. Wave number vector and phase velocity in the Cartesian continuum. 
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Figure 4.1. FE basis nodalization, (a) linear1D (b) quadratic 1D, (c) linear, 2D. 
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Figure 4.2. TWS algorithm discrete solution TS coefficients in non-D wave-number 

space, 1D pure advection. a) C =0.25, b) C = 0.5, c) C = 1.0. 
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Figure 4.2. Continued 
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Figure 4.3. Phase velocity and amplification factor modulus error, 1D pure advection, C 

= 0.5, k =1, θ = 0.5 (except for TG). 
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Figure 4.4. Phase velocity error, 1D pure advection, C = 0.5, k =2, θ = 0. 
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Figure 4.5. Phase velocity error, 1D pure advection, C = 0.5, k =2, θ = 0.5. 
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Figure 4.6. Sample space of wave vector angles for TS theoretical error quantization. 
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Figure 4.7. Theoretical Taylor series wave number dependence for TWSh + θTS 

algorithms, 2D pure advection, η = 3π/4, 0.19 < C < 0.41. 
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Figure 4.7. Continued 
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η = 5π/8, C = 0.19, (x,y) =(4.62,1.913) 

-0.060

-0.050

-0.040

-0.030

-0.020

-0.010

0.000

0.010

1 2 3 4 5

TS exponent on m = κΔx

Tr
un

ca
tio

n 
er

ro
r c

oe
ffi

ci
en

t 

GWS
RG
JLS
TG
TWS
CN

(a) 
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Figure 4.8. Theoretical Taylor series wave number dependence for TWSh + θTS 

algorithms, 2D pure advection, η = 5π/8, 0.19 < C < 0.41. 
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η = 5π/8, C = 0.41, (x,y) = (10.16,4.21) 
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Figure 4.8. Continued 
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Figure 4.9. Theoretical Taylor series wave number dependence for GWSh, TWSh + θTS 

algorithms, 2D pure advection, η = π/2, 5π/8, 3π/4, |C| = 0.41. 
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(a) (b)

(d)(c) 

(e) 

(f)

Figure 5.1. 1D pure advection of a Gaussian IC, C = 0.5, dashed line is exact solution, 

following 3 IC wavelength translation. 
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(b)(a) 

(c) 

(d)

(e) (f)

Figure 5.2. 1D pure advection of a Gaussian initial distribution, C = 1.0, dashed line is 

exact solution following 3-wavelength translation. 
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Figure 5.3. 1D pure advection of a square wave IC for TWS-γ, C = 1.0, dashed line is 

exact solution following 7-wavelength translation.  
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Figure 5.4. 1D pure advection of a Gaussian initial distribution for CN and CNm, C = 

1.0, dashed line is exact solution following 3-wavelength translation. 
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(a) (b)

(d)(c) 

Figure 5.5 Time evolution of Gaussian IC, optimization code suggested parameter sets 

and various C. 
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(a) (b)

(c) 
(d)

(f)(e) 

Figure 5.6. 1D advection-diffusion, solution after 25 time-steps, Pe=10, C=1. 

 

 100



 

 

 

(b)(a) 

(d)(c) 

(f)
(e) 

Figure 5.7. 1D advection-diffusion, solution after 25 time-steps, Pe=1000, C=1. 
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(a) 

 

(b) 

Figure 5.8. Burgers Equation, semi-implicit β, time = 0, 0.2, 0.6, 1.0, 1.4, 2.0, M=200.
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(c)

 

(d)

Figure 5.8. Continued 

 103



 

(e)

 

(f)

Figure 5.8. Continued 
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(g)

 

(h)

Figure 5.8. Continued 
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(a)

 

(b)

Figure 5.9. Burgers equation, fully-implicit β, time = 0, 0.2, 0.6, 1.0, 1.4, 2.0, M=200. 
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(c)

 

(d)

Figure 5.9. Continued 
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Figure 5.10 Gaussian IC and exact solution for the 2D rotating cone verification problem 
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(a) (b)

(d)(c) 

(e) (f)

Figure 5.11. 2D pure advection rotating cone verification problem, discrete solutions after 

one revolution, uniform Cartesian mesh, |C| = 0.3 at IC centroid. 
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(a) (b)

 

(d)(c) 

Figure 5.12. 2D pure advection rotating cone verification problem, discrete solutions after 

one revolution, non-uniform Cartesian mesh, |C| = 0.3 at IC centroid. 
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(a) 
(b)

(d)(c) 

Figure 5.13. 2D pure advection rotating cone verification problem, uniform-triangular 

mesh and discrete solutions after one revolution, uniform triangular mesh, |C| = 0.3 at IC 

centroid, M = 2048. 
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(b)(a) 

(d)(c) 

Figure 5.14. Advection-diffusion with source, M= 20x20, M = 80x80. 
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Figure 5.15. Thermal cavity set, 8x1 aspect ratio. 
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(a) (b) 

Figure 5.16. M=41x201, non-uniform mesh, a) full-mesh, b) close-up. 
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Figure 5.17. Temperature distribution after 1500 time steps for GWS and TWS-γ, 

Ra=3.4E+07, M=41x201. 
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Figure 5.18. Close-up of the temperature distribution after 1500 time steps for GWS and 

TWS-γ, Ra=3.4E+07, M=41x201. 
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Figure 5.19. Temperature energy norm distribution after 1500 time steps for GWS and 

TWS-γ, Ra=3.4E+07, M=41x201. 
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Figure 5.20. Stream function distribution after 1500 time steps for GWS and TWS-γ, 

Ra=3.4E7. M=41x201. 
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Figure 5.21. Temperature distribution after 1500 time steps for GWS and TWS-γ, 

Ra=3.4E+08. 
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Figure 5.22. Temperature energy norm distribution after 1500 time steps for GWS and 

TWS-γ, Ra=3.4E+08. 
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Figure 5.23. Stream-function distribution after 1500 time steps for GWS and TWS-γ, 

Ra=3.4E+08, M=41x201. 
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Figure 5.24. 1D pure advection of a Gaussian initial distribution, C = 1.0, RGm with 

α=100=β, dashed line is exact solution following 3-wavelength translation. 
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Figure 5.25. Phase velocity and amplification factor modulus error, C = 1.0, θ = 0.5.  
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Figure 5.26. Phase velocity and amplification factor modulus error, C=0.5, θ=1.0. 
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Appendix III 

TS expansion of amplification factor modulus error in orders 
of non-D wave number for TWSh + θTS algorithms for 1D 

pure advection  
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Appendix IV 

Matlab script for computing relative phase velocity spectral 
distribution for FE quadratic basis 
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clear all; clc 
theta=0.5; u=1; h=1; delta_t=1; C=0.5;%(u*delta_t)/(2*h); 
gamaV = [-0.4] 
% Phase velocity diagram using log plot 
for j=1:13 
    Piv(j)=(17-j)*pi/16; 
end 
Piv(14)=pi/10; 
for ii =1:14 
    m0(ii)=Piv(ii); 
    AA(ii) = 15*(cos(m0(ii))*sin(m0(ii))*(24*C-40*C^3*gama)... 
        +sin(2*m0(ii))*(12*C+5*C^3*gama)); 
CC(ii) = 15*sqrt((sin(m0(ii)))^2*(4608*C^2 + 5280*C^4*gama+1400*C^6*gama^2)... 
     + cos(2*m0(ii))*(sin(m0(ii)))^2*(-1152*C^2+200*C^6*gama^2)... 
     + cos(m0(ii))*sin(m0(ii))*sin(2*m0(ii))*(576*C^2-720*C^4*gama-
400*C^6*gama^2)... 
     + (sin(2*m0(ii)))^2*(144*C^2 + 120*C^4*gama+25*C^6*gama^2));    
BB(ii) = (sin(m0(ii)))^2*120*C^2*theta;     
DD(ii) = (-576-660*C^2*gama-175*C^4*gama^2 ... 
    +(cos(m0(ii)))^2*(72-240*C^2*gama+200*C^4*gama^2) ... 
    +cos(2*m0(ii))*(144-25*C^4*gama^2) ... 
    +(sin(m0(ii)))^2*(-1800*C^2*theta^2)); 
EE(ii) = cos(m0(ii))*sin(m0(ii))*(720*C*theta-1200*C^3*gama*theta)... 
        + sin(2*m0(ii))*theta*(360*C+150*C^3*gama); 
Re11(ii) = DD(ii)^2+EE(ii)^2+BB(ii)*DD(ii); 
Re22(ii) = -EE(ii)*(AA(ii)-CC(ii)); 
Im11(ii) = (AA(ii)-CC(ii))*DD(ii);  
Im22(ii) = BB(ii)*EE(ii); 
RPV(ii) = atan((Im11(ii)+Im22(ii))/(Re11(ii)+Re22(ii)))/(m0(ii)*C); 
pv_error(ii) = (1-RPV(ii))*100; 
end 
figure(3) 
hold all 
set(0,'DefaultAxesColorOrder',[0 0 0 ],... 
      'DefaultAxesLineStyleOrder','-^|-o|-.x|-<|-d|-*|:') 
plot(log10(m0),pv_error) 
axis([-0.5 0.5 0 100]) 
set(gca,'XTickLabel','inf| | | |8delx| | |4delx|||2delx') 
title(['Phase Velocity Error Spectral Distribution, C=' ... 
    num2str(C), ', \theta=', num2str(theta) ]) 
xlabel('\lambda') 
ylabel('Phase Velocity Error (%)') ;legend('\gamma = -0.4') 
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Appendix V 

TS expansion of amplification factor for TWSh + θTS 
algorithms in orders of non-D wave number for 2D pure 

advection 
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Appendix VI 

TS expansion of amplification factor phase error for TWSh + 
θTS algorithms in orders of non-D wave number for 2D pure 

advection  

 

 

 

 

 



eh
k=1 =  

 

 

 135



 136
 



 137
 



 138
 



 139
 



 

 

 

 140
 



 

 

 

 

 141



 

 
 142



 

 

 

 

 

 

 143



 144

 

 

 

 

 

 

Appendix VII 

Matlab script for the 1D advection-diffusion 
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clear all;clc; 
% TWS algorithm in dimensional form 
global X1 elcon; 
%*********** Geometry *********************************** 
QL = [1]; 
%*********** Physical Parameters *********************** 
Xleft = 0; Xright = 40; nnodes = 41; 
co = 1.;  
%Order of the algorithm: 1)GWS--RG--3)RGm--JLS--5)TG--TWS--Optmiza.. 
for dd = [1] 
if dd == 1 
AA = [0 0 0 0.5] 
alpha = AA(1,1); beta = AA(1,2); gamma = AA(1,3); theta=AA(1,4); 
elseif dd == 2 
AA = [2/(sqrt(15)*co) 2/(sqrt(15)*co) 0 0.5] 
alpha = AA(1,1); beta = AA(1,2); gamma = AA(1,3); theta=AA(1,4); 
elseif dd == 3 
AA = [100 100 0 0.5] 
alpha = AA(1,1); beta = AA(1,2); gamma = AA(1,3); theta=AA(1,4); 
elseif dd == 4 
AA = [1 1 0 0.5] 
alpha = AA(1,1); beta = AA(1,2); gamma = AA(1,3); theta=AA(1,4); 
elseif dd == 5 
AA = [0 1 1 0] 
alpha = AA(1,1); beta = AA(1,2); gamma = AA(1,3); theta=AA(1,4); 
elseif dd == 6 
AA = [0 0 -.5 0.5] 
alpha = AA(1,1); beta = AA(1,2); gamma = AA(1,3); theta=AA(1,4); 
elseif dd == 7 
AA = [0.20938 0.15328 -.4799 0.52805] 
alpha = AA(1,1); beta = AA(1,2); gamma = AA(1,3); theta=AA(1,4); 
end 
dq=0; 
X1 = linspace(Xleft,Xright,nnodes); 
u = ones(nnodes,1); 
delta_x = (X1(length(X1))-X1(1))/(nnodes-1); 
qleft = 0; 
nodeL = ceil(length(X1)/4); 
L = X1(nodeL)-X1(1); 
XL = X1(1:nodeL); 
qinit = zeros(length(X1),1); 
qinit(1:nodeL) = (1-cos(2*pi*XL/L))/2; 
qFinal = zeros(length(X1),1); 
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vel = u(1); 
%*********** Time Integration Parameters *********************** 
delta_t = co*delta_x/u(1); 
start = 1; 
inc = 1; 
stop = 25; 
Pe = 1000; 
DifC = 1/Pe; 
[Xnodes Ynodes] = size(X1); 
%q = qinit; 
q_last = qinit; 
%unsteady time integration loop. 
time_count = 1; 
q_store(:,time_count) = qinit; 
for timeLoop = start:inc:stop; 
q = q_last; 
 
%** Apply Boundary Conditions to Initial Condition for Set 0 ******************** 
for ii=1:1:length(QL) 
q(QL(ii)) = +qleft; 
end 
 
%********************* Equations for Set 0***************** 
 
q0 = asres1D(vel*delta_t,[],[],0,'A201L',q)... 
    +asres1D(beta*delta_t^2*vel^2/2,[],[],-1,'A211L',q)... 
    +asres1D(delta_t*DifC,[],[],-1,'A211L',q); 
 
%Apply Dirichlet boundary condition to boundary QL. 
for ii=1:1:length(QL) 
q0(QL(ii)) = 0; 
end 
 
%***************** Jacobians for Set 0********** 
%Equation q by q 
q_jac0 = +asjac1D(1,[],[],1,'A200L',[])... 
         +asjac1D(-alpha*delta_t*vel/2,[],[],0,'A201L',[])... 
         +asjac1D(gamma*delta_t^2*vel^2/6,[],[],-1,'A211L',[])... 
         +asjac1D(theta.*delta_t*vel,[],[],0,'A201L',[])... 
         +asjac1D(theta.*beta.*delta_t^2*vel^2/2,[],[],-1,'A211L',[])... 
         +asjac1D(theta*delta_t*DifC,[],[],-1,'A211L',[]); 
 
%Apply Dirichlet boundary condition to boundary QL. 
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for ii=1:1:length(QL) 
q_jac0(QL(ii),:) = 0; 
q_jac0(:,QL(ii)) = 0; 
q_jac0(QL(ii),QL(ii)) = 1; 
end 
 
%***************** Solver ******************************************** 
dq = q_jac0\(-q0); 
 
%************* Solve Iterate ***************************************** 
q = q + dq; 
time_count = time_count + 1; 
q_store(:,time_count) = q; 
% first entry in q_store is for IC. stop data is stored in stop+1  
q_last = q; 
end     % end of time integration loop 
 
figure(dd) 
hold on 
plot(X1,q_store(:,1),'k-') 
plot(X1,q_store(:,stop+1),'k-+') 
MAXm = max(q_store(:,stop+1)) 
MINm = min(q_store(:,stop+1)) 
qstop_plot(:,dd)=q_store(:,stop+1); 
 
xlabel('X1'),ylabel('q') 
title(['Pe=' num2str(Pe) ', C=', num2str(co) ', \theta='... 
       num2str(theta) ', \alpha=' ... 
       num2str(alpha) ', \beta=' ... 
       num2str(beta) ', \gamma=' num2str(gamma) ', M='... 
      num2str(Xright) ]) 
legend('t=0','t=25','Location','Best') 
%legend('t=0','t=', num2str(dist) ,'t=exact','Location','Best') 
%legend(num2str(dist)) 
  set(gca,'YGrid','on') 
   
end 
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Appendix VIII 

Matlab script for the 1D Burgers equation 
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clear all;clc; 
global X1 elcon; 
%*********** Geometry *********************************** 
M = 200; nnodes=M+1; 
QL = [1]; QR = [nnodes]; 
timePlot = [ 0 .2 0.6 1.0 1.4 2.0] ; % the time to plot 
Re = 1000; 
%*********** Physical Parameters *********************** 
Xleft = 0; Xright = 1; 
alpha = -0.25; beta = .5; gamma = 0; 
dq=0; 
X1 = linspace(Xleft,Xright,nnodes); 
delta_x = (X1(length(X1))-X1(1))/(nnodes-1); 
uleft = 0; 
u0 = zeros(length(X1),1); 
u0(1:nnodes) = 0.5*sin(pi*X1)+sin(2*pi*X1); 
 
%*********** Time Integration Parameters *********************** 
delta_t = 0.05; 
theta = 0.5; 
start = 1; 
inc = 1; 
stop = 300; % Max number of time-steps allowed 
gammaCoef = gamma*(delta_t^2)/6; 
betaCoef = beta*(delta_t^2)/2; 
u = u0; 
uN = u0; 
maxIter = 80; eps = 0.001; 
%unsteady time integration loop. 
time_count = 1; 
time = 0; 
Total_Iter = 0; 
u_store(:,time_count) = u0; 
for timeLoop = start:inc:stop; 
    iteration = 0; 
%    res_uOld=+asres1D(betaCoef*(1-theta),[],u.^2,-1,'A3011L',u);  
%    max_uOld =max(abs(res_uOld)) 
     
  for ii = 1:maxIter 
    uAvg = (uN+u)/2; 
u_res0 = +asres1D(1,[],[],1,'A200L',uN-u)... 
        +asres1D(theta*delta_t,[],uN,0,'A3001L',uN)... 
        +asres1D(theta*delta_t/Re,[],[],-1,'A211L',uN)...    
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        +asres1D(delta_t*(1-theta),[],u,0,'A3001L',u)... 
        +asres1D(delta_t*(1-theta)/Re,[],[],-1,'A211L',u)...      
        +asres1D(betaCoef*theta,[],uN.^2,-1,'A3011L',uN)... 
        +asres1D(gammaCoef,[],uAvg.^2,-1,'A3011L',uN-u)...  
        +asres1D(alpha*delta_t/2,[],uAvg,0,'A3010L',uN-u)... 
        +asres1D(betaCoef*(1-theta),[],u.^2,-1,'A3011L',u); 
         
        
%Apply Dirichlet boundary condition to boundary QL. 
for ii=1:1:length(QL) 
u_res0(QL(ii)) = 0; 
end 
 
%Apply Dirichlet boundary condition to boundary QL. 
for ii=1:1:length(QR) 
u_res0(QR(ii)) = 0; 
end 
%***************** Jacobians for Set 0********** 
%Equation q by q 
u_jac0 = +asjac1D(1,[],[],1,'A200L',[])...       
         +asjac1D(theta.*delta_t,[],uN,0,'A3001L',[])... 
         +asjac1D(theta.*delta_t,[],uN,0,'A3100L',[])... 
         +asjac1D(theta.*delta_t/Re,[],[],-1,'A211L',[])...          
         +asjac1D(betaCoef*theta,[],uN.^2,-1,'A3011L',[])...  
         +asjac1D(betaCoef*theta*2,[],uN,-1,'A3110L',uN)... 
          +asjac1D(gammaCoef,[],uAvg.^2,-1,'A3011L',[])...  
         +asjac1D(gammaCoef,[],uN-u,-1,'A3110L',uAvg)... 
          +asjac1D(alpha*delta_t/2,[],uAvg,0,'A3010L',[])... 
          +asjac1D(alpha*delta_t/4,[],uN-u,0,'A3010L',[]); 
                        
%Apply Dirichlet boundary condition to boundary QL. 
for ii=1:1:length(QL) 
u_jac0(QL(ii),:) = 0; 
u_jac0(:,QL(ii)) = 0; 
u_jac0(QL(ii),QL(ii)) = 1; 
end 
 
%Apply Dirichlet boundary condition to boundary QL. 
for ii=1:1:length(QR) 
u_jac0(QR(ii),:) = 0; 
u_jac0(:,QR(ii)) = 0; 
u_jac0(QR(ii),QR(ii)) = 1; 
end 
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%***************** Solver ******************************************** 
uq = u_jac0\(-u_res0); 
uN = uN + uq; 
if abs(uq) <= eps 
    break 
end 
    iteration = iteration +1; 
end %% end of non-linear loop 
     
%************* Solve Iterate ***************************************** 
u = uN; 
time_count = time_count + 1; 
u_store(:,time_count) = uN; 
time = time + delta_t 
iteration 
Total_Iter = Total_Iter+iteration; 
if time >= max(timePlot) 
    break 
end 
end %end time integration loop 
Total_Iter 
figure (1) 
PPP = ceil(timePlot/delta_t); 
PPP(1) = 1; 
axes_handle=plot(X1,u_store(:,PPP),'.-') 
xlabel('X1','FontSize',12),ylabel('q','FontSize',12) 
title(['M=' num2str(M) ', Re=' num2str(Re) ', \alpha=' num2str(alpha) ... 
    ', \beta=' num2str(beta) ... 
    ', \gamma=' num2str(gamma) ', \theta=' num2str(theta)],'FontSize',12) 
legend(num2str(timePlot(1)),num2str(timePlot(2)),num2str(timePlot(3)),... 
    num2str(timePlot(4)),num2str(timePlot(5)),num2str(timePlot(6))) 
axes_handle = gca; 
set(axes_handle,'YGrid','on') 
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Appendix IX 

Matlab script for the rotating cone 
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clear all; clc 
global X1 X2 elcon; 
%*********** Geometry *********************************** 
eltall=32; 
elwide=32; 
GenRectMesh('32x32.geom',eltall,elwide,-16,16,-16,16); 
 
%Read geometry from file. 
fid = fopen('32x32.geom'); 
 
var1 = fscanf(fid,'%s',1); 
var2 = fscanf(fid,'%s',1); 
if( var1 == 'X1') 
        size_X1X2 = fscanf(fid,'%i',[1 2]); 
        X1X2 = (fscanf(fid,'%f',[size_X1X2(2) size_X1X2(1)]))'; 
        X1 = X1X2(:,1); 
        X2 = X1X2(:,2); 
else 
fprinf('Error:The domain variable, X1, has not been identified.') 
end 
 
var = fscanf(fid,'%s',1); 
if( var == 'elcon') 
 size_elcon = fscanf(fid,'%i',[1 2]); 
 elcon = (fscanf(fid,'%i',[size_elcon(2) size_elcon(1)]))'; 
else 
fprinf('Error:The element connectivity, elcon, has not been identified.') 
end 
 
while(~feof(fid)) 
var = fscanf(fid,'%s',1); 
if(strcmp(var,'XL')) 
size_bc = fscanf(fid,'%i',1); 
XL = (fscanf(fid,'%i',size_bc))'; 
elseif(strcmp(var,'XR')) 
size_bc = fscanf(fid,'%i',1); 
XR = (fscanf(fid,'%i',size_bc))'; 
elseif(strcmp(var,'YT')) 
size_bc = fscanf(fid,'%i',1); 
YT = (fscanf(fid,'%i',size_bc))'; 
elseif(strcmp(var,'YB')) 
size_bc = fscanf(fid,'%i',1); 
YB = (fscanf(fid,'%i',size_bc))'; 
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elseif(strcmp(var,'BLANK')) 
size_blank = fscanf(fid,'%i',1); 
BLANK = (fscanf(fid,'%i',size_blank))'; 
end 
end 
fclose(fid); 
%*********** Physical Parameters *********************** 
%Pa = 0.01; 
%uo = sqrt(2); 
%vo = -sqrt(2); 
walls = 0; 
%*********** Iteration Parameters *********************** 
[Xnodes Ynodes] = size(X1); 
q0 = zeros(Xnodes.*Ynodes,1); 
for ii=1:1:length(XL) 
q0(XL(ii)) = +walls; 
end 
for ii=1:1:length(XR) 
q0(XR(ii)) = +walls; 
end 
for ii=1:1:length(YT) 
q0(YT(ii)) = +walls; 
end 
for ii=1:1:length(YB) 
q0(YB(ii)) = +walls; 
end 
 
% 3. Extract the node points where the gaussian wave is to be applied 
left = 3; 
right = 13; 
bottom = -5; 
top = 5; 
count=1; 
for ii=1:1:Xnodes*Ynodes 
  if X1(ii) > left & X1(ii) < right & X2(ii) > bottom & X2(ii) < top 
 
        ICxy(count,1) = X1(ii); 
        ICxy(count,2) = X2(ii); 
        %save the indices for mapping back to the original domain 
        index(count,1) = ii; 
        count = count + 1; 
  end 
end 
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% 4. Normalize the extracted domain to -pi to pi 
 
Xmax = max(ICxy(:,1)); 
Xmin = min(ICxy(:,1)); 
Ymax = max(ICxy(:,2)); 
Ymin = min(ICxy(:,2)); 
for ii=1:1:length(ICxy(:,1)) 
        ICxy_norm(ii,1) = (2*pi)*(ICxy(ii,1)-Xmin)/(Xmax-Xmin) - pi; 
        ICxy_norm(ii,2) = (2*pi)*(ICxy(ii,2)-Ymin)/(Ymax-Ymin) - pi; 
end 
 
% 5. Apply the gaussian IC to this new domain piece 
 
r = sqrt(ICxy_norm(:,1).^2 + ICxy_norm(:,2).^2); 
size_r = size(r); 
for ii=1:1:size_r(1) 
  for jj=1:1:size_r(2) 
        if r(ii,jj)>pi 
        q_norm(ii,jj) = 0; 
        else 
        q_norm(ii,jj) = (1 + cos(r(ii,jj)))/2; 
        end 
  end 
end 
 
size(q0) 
% 6. Map the new IC values back to the correct domain locations 
for ii=1:1:length(index(:,1)) 
        q0(index(ii,1),1) = q_norm(ii); 
end 
 
start = 1; 
inc = 1; 
stop = 1; 
q = q0; 
% u=.1*X2; % u and v are approximately 0.45 at the center of the cone 
% v=-.1*X1; 
u=(.1*X2)*(10/8); % u and v are approximately 0.45 at the center of the cone 
v=(-.1*X1)*(10/8); 
 
delta_t = .2992;theta = 0.5; 
gamma=-.5;alpha=0;beta=0; 
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%unsteady time integration loop. 
time_count = 0; 
 
q_last=q0; 
for timeLoop = start:inc:stop; 
q = q_last; 
 
 
%********************* Equations for Set 0***************** 
res_0 = asres2D_vel(delta_t,[],u,0,'B3001L',q)... 
    +asres2D_vel(delta_t,[],v,0,'B3002L',q)... 
    +asres2D_vel(beta*delta_t^2/2,[],u.*u,-1,'B3011L',q)... 
    +asres2D_vel(beta*delta_t^2/2,[],v.*v,-1,'B3022L',q)... 
    +asres2D_vel(beta*delta_t^2/2,[],u.*v,-1,'B3012L',q)... 
    +asres2D_vel(beta*delta_t^2/2,[],u.*v,-1,'B3021L',q); 
 
%Apply Dirichlet boundary condition to boundary XL. 
for ii=1:1:length(XL)/2 
    res_0(XL(ii)) = 0; 
end 
%Apply Dirichlet boundary condition to boundary YB. 
for ii=1:1:length(YB)/2 
    res_0(YB(ii)) = 0; 
end 
%Apply Dirichlet boundary condition to boundary XR. 
for ii=ceil((length(XR)/2)):1:length(XR) 
    res_0(XR(ii)) = 0; 
end 
%Apply Dirichlet boundary condition to boundary YT. 
for ii=ceil((length(YT)/2)):1:length(YT) 
    res_0(YT(ii)) = 0; 
end 
 
%***************** Jacobians for Set 0********** 
thdelt = theta.*delta_t; 
%Equation q by q 
jac_0 = +asjac2D_vel(1,[],[],1,'B200L',[])... 
    +asjac2D_vel(thdelt,[],u,0,'B3001L',[])... 
    +asjac2D_vel(thdelt,[],v,0,'B3002L',[])... 
    +asjac2D_vel(gamma*delta_t^2/6,[],u.*u,-1,'B3011L',[])... 
    +asjac2D_vel(gamma*delta_t^2/6,[],v.*v,-1,'B3022L',[])... 
    +asjac2D_vel(gamma*delta_t^2/6,[],u.*v,-1,'B3012L',[])... 
    +asjac2D_vel(gamma*delta_t^2/6,[],u.*v,-1,'B3021L',[])... 
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    +asjac2D_vel(theta*beta*delta_t^2/2,[],u.*u,-1,'B3011L',[])... 
    +asjac2D_vel(theta*beta*delta_t^2/2,[],v.*v,-1,'B3022L',[])... 
    +asjac2D_vel(theta*beta*delta_t^2/2,[],u.*v,-1,'B3012L',[])... 
    +asjac2D_vel(theta*beta*delta_t^2/2,[],u.*v,-1,'B3021L',[])... 
    +asjac2D_vel(alpha*delta_t/2,[],u,0,'B3010L',[])... 
    +asjac2D_vel(alpha*delta_t/2,[],v,0,'B3020L',[]); 
 
% Apply Dirichlet BC to only top half region of XL 
for ii=1:1:length(XL)/2 
jac_0(XL(ii),:) = 0; 
jac_0(:,XL(ii)) = 0; 
jac_0(XL(ii),XL(ii)) = 1; 
end 
%Apply Dirichlet boundary condition to boundary YB. 
for ii=1:1:length(YB)/2 
jac_0(YB(ii),:) = 0; 
jac_0(:,YB(ii)) = 0; 
jac_0(YB(ii),YB(ii)) = 1; 
end 
%Apply Dirichlet boundary condition to boundary XR. 
for ii=ceil(length(XR)/2):1:length(XR) 
jac_0(XR(ii),:) = 0; 
jac_0(:,XR(ii)) = 0; 
jac_0(XR(ii),XR(ii)) = 1; 
end 
%Apply Dirichlet boundary condition to boundary YB. 
for ii=ceil(length(YT)/2):1:length(YT) 
jac_0(YT(ii),:) = 0; 
jac_0(:,YT(ii)) = 0; 
jac_0(YT(ii),YT(ii)) = 1; 
end 
%***************** Solver ******************************************** 
dq = jac_0\(-res_0); 
q = q + dq; 
q_last=q; 
q_store(:,timeLoop) = q; 
 
time_count = time_count + 1 
end %end time integration loop 
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##### **** temp.pns **** {PRES} {U1 U2 TEMP PHI} {OMGA} {PSI} {NORMS} 
INTEGRATION FACTORS 
   INITIAL_TIME 
   FINAL_TIME 
   PROBLEM_CONVERGENCE_CRITERIA 
   MAXIMUM_CHANGE_IN_Q_(DQ) 
   INITIAL_TIME_STEP 
   TIME_STEP_MULTIPLIER 
   MAXIMUM_TIME_STEP 
   CRITERIA_TO_RAISE_MAX_TIME_STEP 
   MAXIMUM_NUMBER_OF_STEPS 
   MAXIMUM_NUMBER_OF_ITERATIONS_PER_STEP 
   ITERATION_CONVERGENCE_CRITERIA 
   THETA_IMPLICITNESS_FACTOR 
   CONVERGENCE_VARIABLE 
 
TRANSFORMATION ARRAYS 
      ETKJ      1. 
      DETJ      1 
#      DETE      0. 
 
BOUNDARY CONDITIONS 
          U1 U2 TEMP PHI PRES OMGA PSI    # ORDER 
  FLUX     3  0  0  0  0  0  0     # CONVECTION HEAT FLUX 
  HFLUX    4  0  0  0  0  0  0     # HEAT FLUX 
  RFLUX    5  0  0  0  0  0  0     # RADIATION HEAT FLUX 
  HRFLX    6  0  0  0  0  0  0     # RADIATION HEAT FLUX 
  INLT_P   3  0  0  0  0  0  0     # INLET 
  WALL_SL  4  0  0  0  0  0  0     # SLIP WALL 
  DIRI_U   D  0  0  0  0  0  0     # DIRICHLET U 
  DIRI_V   0  D  0  0  0  0  0     # DIRICHLET V 
  WALL_NS  D  D  0  0  0  0  D     # NO SLIP WALL 
  DIRI_T   0  0  D  0  0  0  0     # WALL TEMPERATURE 
  DIRI_PHI 0  0  0  D  0  0  0     # THROUGHFLOW PHI 
  DIRI_P   0  0  0  0  D  0  0     # THROUGHFLOW PRESSURE 
  DIRI_OMG 0  0  0  0  0  D  0     # DIRICHLET OMGA 
  DIRI_PSI 0  0  0  0  0  0  D     # DIRICHLET PSI 
  BLANK    D  D  D  D  D  D  D     # BLANK REGION 
 
TITLE 
   PHI ALGORITHM,  DELSQ PRESSURE SOLVE 
 
RESIDUALS 
  PRES   2   #  VARBL, SET NO.,  --- SPATIAL  SET (PRES) 
 ()(U1)(EPMN)(11;-1)(B3011)(U1) 
+()(U2)(EPMN)(12;-1)(B3011)(U1) 
+()(U1)(EPMN)(21;-1)(B3011)(U2) 
+()(U2)(EPMN)(22;-1)(B3011)(U2) 
+()(U1)(EPMN)(13;-1)(B3012)(U1) 
+()(U2)(EPMN)(14;-1)(B3012)(U1) 
+()(U1)(EPMN)(23;-1)(B3012)(U2) 
+()(U2)(EPMN)(24;-1)(B3012)(U2) 
+()(U1)(EPMN)(31;-1)(B3021)(U1) 



 160

+()(U2)(EPMN)(32;-1)(B3021)(U1) 
+()(U1)(EPMN)(41;-1)(B3021)(U2) 
+()(U2)(EPMN)(42;-1)(B3021)(U2) 
+()(U1)(EPMN)(33;-1)(B3022)(U1) 
+()(U2)(EPMN)(34;-1)(B3022)(U1) 
+()(U1)(EPMN)(43;-1)(B3022)(U2) 
+()(U2)(EPMN)(44;-1)(B3022)(U2) 
+(-,GRSH,RE2I)()()(2;0)(B210)(TEMP) 
+(-,GRSH,RE2I)()()(4;0)(B220)(TEMP) 
  PRES   6   #  VARBL, SET NO.,  --- BOUNDARY  SET (PRES) 
 (REI)()(EPMN,RET)(0;-1)(A3011)(U1) 
#()(U1)(EPMN)(11;-1)(B3011R)(U1) 
  PRES   7   #  VARBL, SET NO.,  --- BOUNDARY  SET (PRES) 
 (-,REI)()(EPMN,RET)(0;-1)(A3011)(U1) 
  PRES   8   #  VARBL, SET NO.,  --- BOUNDARY  SET (PRES) 
 (TWO,REI)()(EPMN,RET)(0;0)(A3001)(U1) 
  PRES   9   #  VARBL, SET NO.,  --- BOUNDARY  SET (PRES) 
 (-,TWO,REI)()(EPMN,RET)(0;0)(A3001)(U1) 
 
JACOBIANS 
  PRES PRES  2  1  #  VARBL, VARDIF, SET, ALL DIRECTIONS 
 ()()(EPMN)(1122;-1)(B3011)() 
+()()(EPMN)(3344;-1)(B3022)() 
+()()(EPMN)(1324;-1)(B3021)() 
+()()(EPMN)(1324;-1)(B3012)() 
 
GROUP FREQUENCY 
     -1  
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE 
     PHI CONSTRAINT INS GWS ALGORITHM, 2D, FULL NEWTON JACOBIAN 
(12/21/99) 
  
RESIDUALS 
  U1   1    #  VARBL, SET NO.,  --- TEMPORAL SET (U1) 
 ()()()(0;1)(B200)(-U1) 
+()()()(1;0)(B201)(PHI) 
+()()()(3;0)(B202)(PHI) 
+()()()(1;0)(B201)(SPHI) 
+()()()(3;0)(B202)(SPHI) 
+(GAMA,HP,HP,HALF)()(U1,U1)(11;-1.0)(B3011)(-U1) 
+(GAMA,HP,HP,HALF)()(U1,U2)(12;-1.0)(B3011)(-U1) 
+(GAMA,HP,HP,HALF)()(U1,U2)(21;-1.0)(B3011)(-U1) 
+(GAMA,HP,HP,HALF)()(U2,U2)(22;-1.0)(B3011)(-U1) 
+(GAMA,HP,HP,HALF)()(U1,U1)(13;-1.0)(B3012)(-U1) 
+(GAMA,HP,HP,HALF)()(U1,U2)(14;-1.0)(B3012)(-U1) 
+(GAMA,HP,HP,HALF)()(U1,U2)(23;-1.0)(B3012)(-U1) 
+(GAMA,HP,HP,HALF)()(U2,U2)(24;-1.0)(B3012)(-U1) 
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+(GAMA,HP,HP,HALF)()(U1,U1)(31;-1.0)(B3021)(-U1) 
+(GAMA,HP,HP,HALF)()(U1,U2)(32;-1.0)(B3021)(-U1) 
+(GAMA,HP,HP,HALF)()(U1,U2)(41;-1.0)(B3021)(-U1) 
+(GAMA,HP,HP,HALF)()(U2,U2)(42;-1.0)(B3021)(-U1) 
+(GAMA,HP,HP,HALF)()(U1,U1)(33;-1.0)(B3022)(-U1) 
+(GAMA,HP,HP,HALF)()(U1,U2)(34;-1.0)(B3022)(-U1) 
+(GAMA,HP,HP,HALF)()(U1,U2)(43;-1.0)(B3022)(-U1) 
+(GAMA,HP,HP,HALF)()(U2,U2)(44;-1.0)(B3022)(-U1) 
+(GAMA,HP,HP,HALF)()(U1L,U1L)(11;-1.0)(B3011)(-U1) 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(12;-1.0)(B3011)(-U1) 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(21;-1.0)(B3011)(-U1) 
+(GAMA,HP,HP,HALF)()(U2L,U2L)(22;-1.0)(B3011)(-U1) 
+(GAMA,HP,HP,HALF)()(U1L,U1L)(13;-1.0)(B3012)(-U1) 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(14;-1.0)(B3012)(-U1) 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(23;-1.0)(B3012)(-U1) 
+(GAMA,HP,HP,HALF)()(U2L,U2L)(24;-1.0)(B3012)(-U1) 
+(GAMA,HP,HP,HALF)()(U1L,U1L)(31;-1.0)(B3021)(-U1) 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(32;-1.0)(B3021)(-U1) 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(41;-1.0)(B3021)(-U1) 
+(GAMA,HP,HP,HALF)()(U2L,U2L)(42;-1.0)(B3021)(-U1) 
+(GAMA,HP,HP,HALF)()(U1L,U1L)(33;-1.0)(B3022)(-U1) 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(34;-1.0)(B3022)(-U1) 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(43;-1.0)(B3022)(-U1) 
+(GAMA,HP,HP,HALF)()(U2L,U2L)(44;-1.0)(B3022)(-U1) 
 
  U1   2    #  VARBL, SET NO.,  --- SPATIAL  SET (U1) 
 ()()(U1+U2)(1020;0)(B3001)(U1) 
+()()(U1+U2)(3040;0)(B3002)(U1) 
+()()()(1;0)(B201)(PRES) 
+()()()(3;0)(B202)(PRES) 
+(REI)()()(1122;-1)(B211)(U1) 
+(REI)()()(3344;-1)(B222)(U1) 
+(REI)()()(1324;-1)(B221)(U1) 
+(REI)()()(1324;-1)(B212)(U1) 
+(BETA,HT)()(U1,U1)(11;-1.0)(B3011)(U1) 
+(BETA,HT)()(U1,U2)(12;-1.0)(B3011)(U1) 
+(BETA,HT)()(U1,U2)(21;-1.0)(B3011)(U1) 
+(BETA,HT)()(U2,U2)(22;-1.0)(B3011)(U1) 
+(BETA,HT)()(U1,U1)(13;-1.0)(B3012)(U1) 
+(BETA,HT)()(U1,U2)(14;-1.0)(B3012)(U1) 
+(BETA,HT)()(U1,U2)(23;-1.0)(B3012)(U1) 
+(BETA,HT)()(U2,U2)(24;-1.0)(B3012)(U1) 
+(BETA,HT)()(U1,U1)(31;-1.0)(B3021)(U1) 
+(BETA,HT)()(U1,U2)(32;-1.0)(B3021)(U1) 
+(BETA,HT)()(U1,U2)(41;-1.0)(B3021)(U1) 
+(BETA,HT)()(U2,U2)(42;-1.0)(B3021)(U1) 
+(BETA,HT)()(U1,U1)(33;-1.0)(B3022)(U1) 
+(BETA,HT)()(U1,U2)(34;-1.0)(B3022)(U1) 
+(BETA,HT)()(U1,U2)(43;-1.0)(B3022)(U1) 
+(BETA,HT)()(U2,U2)(44;-1.0)(B3022)(U1) 
 
  U2   1    #  VARBL, SET NO.,  --- TEMPORAL SET (U2) 
 ()()()(0;1)(B200)(-U2) 
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+()()()(2;0)(B201)(PHI) 
+()()()(4;0)(B202)(PHI) 
+()()()(2;0)(B201)(SPHI) 
+()()()(4;0)(B202)(SPHI) 
+(GAMA,HP,HP,HALF)()(U1,U1)(11;-1.0)(B3011)(-U2) 
+(GAMA,HP,HP,HALF)()(U1,U2)(12;-1.0)(B3011)(-U2) 
+(GAMA,HP,HP,HALF)()(U1,U2)(21;-1.0)(B3011)(-U2) 
+(GAMA,HP,HP,HALF)()(U2,U2)(22;-1.0)(B3011)(-U2) 
+(GAMA,HP,HP,HALF)()(U1,U1)(13;-1.0)(B3012)(-U2) 
+(GAMA,HP,HP,HALF)()(U1,U2)(14;-1.0)(B3012)(-U2) 
+(GAMA,HP,HP,HALF)()(U1,U2)(23;-1.0)(B3012)(-U2) 
+(GAMA,HP,HP,HALF)()(U2,U2)(24;-1.0)(B3012)(-U2) 
+(GAMA,HP,HP,HALF)()(U1,U1)(31;-1.0)(B3021)(-U2) 
+(GAMA,HP,HP,HALF)()(U1,U2)(32;-1.0)(B3021)(-U2) 
+(GAMA,HP,HP,HALF)()(U1,U2)(41;-1.0)(B3021)(-U2) 
+(GAMA,HP,HP,HALF)()(U2,U2)(42;-1.0)(B3021)(-U2) 
+(GAMA,HP,HP,HALF)()(U1,U1)(33;-1.0)(B3022)(-U2) 
+(GAMA,HP,HP,HALF)()(U1,U2)(34;-1.0)(B3022)(-U2) 
+(GAMA,HP,HP,HALF)()(U1,U2)(43;-1.0)(B3022)(-U2) 
+(GAMA,HP,HP,HALF)()(U2,U2)(44;-1.0)(B3022)(-U2) 
+(GAMA,HP,HP,HALF)()(U1L,U1L)(11;-1.0)(B3011)(-U2) 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(12;-1.0)(B3011)(-U2) 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(21;-1.0)(B3011)(-U2) 
+(GAMA,HP,HP,HALF)()(U2L,U2L)(22;-1.0)(B3011)(-U2) 
+(GAMA,HP,HP,HALF)()(U1L,U1L)(13;-1.0)(B3012)(-U2) 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(14;-1.0)(B3012)(-U2) 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(23;-1.0)(B3012)(-U2) 
+(GAMA,HP,HP,HALF)()(U2L,U2L)(24;-1.0)(B3012)(-U2) 
+(GAMA,HP,HP,HALF)()(U1L,U1L)(31;-1.0)(B3021)(-U2) 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(32;-1.0)(B3021)(-U2) 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(41;-1.0)(B3021)(-U2) 
+(GAMA,HP,HP,HALF)()(U2L,U2L)(42;-1.0)(B3021)(-U2) 
+(GAMA,HP,HP,HALF)()(U1L,U1L)(33;-1.0)(B3022)(-U2) 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(34;-1.0)(B3022)(-U2) 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(43;-1.0)(B3022)(-U2) 
+(GAMA,HP,HP,HALF)()(U2L,U2L)(44;-1.0)(B3022)(-U2) 
 
  U2   2   #  VARBL, SET NO.,  --- SPATIAL  SET (U2) 
 ()()(U1+U2)(1020;0)(B3001)(U2) 
+()()(U1+U2)(3040;0)(B3002)(U2) 
+()()()(2;0)(B201)(PRES) 
+()()()(4;0)(B202)(PRES) 
+(REI)()()(1122;-1)(B211)(U2) 
+(REI)()()(3344;-1)(B222)(U2) 
+(REI)()()(1324;-1)(B221)(U2) 
+(REI)()()(1324;-1)(B212)(U2) 
+(BETA,HT)()(U1,U1)(11;-1.0)(B3011)(U2) 
+(BETA,HT)()(U1,U2)(12;-1.0)(B3011)(U2) 
+(BETA,HT)()(U1,U2)(21;-1.0)(B3011)(U2) 
+(BETA,HT)()(U2,U2)(22;-1.0)(B3011)(U2) 
+(BETA,HT)()(U1,U1)(13;-1.0)(B3012)(U2) 
+(BETA,HT)()(U1,U2)(14;-1.0)(B3012)(U2) 
+(BETA,HT)()(U1,U2)(23;-1.0)(B3012)(U2) 
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+(BETA,HT)()(U2,U2)(24;-1.0)(B3012)(U2) 
+(BETA,HT)()(U1,U1)(31;-1.0)(B3021)(U2) 
+(BETA,HT)()(U1,U2)(32;-1.0)(B3021)(U2) 
+(BETA,HT)()(U1,U2)(41;-1.0)(B3021)(U2) 
+(BETA,HT)()(U2,U2)(42;-1.0)(B3021)(U2) 
+(BETA,HT)()(U1,U1)(33;-1.0)(B3022)(U2) 
+(BETA,HT)()(U1,U2)(34;-1.0)(B3022)(U2) 
+(BETA,HT)()(U1,U2)(43;-1.0)(B3022)(U2) 
+(BETA,HT)()(U2,U2)(44;-1.0)(B3022)(U2) 
+(-,GRSH,RE2I)()()(0;1)(B200)(TEMP) 
 
  TEMP   1    #  VARBL, SET NO.,  --- TEMPORAL SET (TEMP) 
 ()()()(0;1)(B200)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U1,U1)(11;-1.0)(B3011)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U1,U2)(12;-1.0)(B3011)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U1,U2)(21;-1.0)(B3011)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U2,U2)(22;-1.0)(B3011)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U1,U1)(13;-1.0)(B3012)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U1,U2)(14;-1.0)(B3012)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U1,U2)(23;-1.0)(B3012)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U2,U2)(24;-1.0)(B3012)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U1,U1)(31;-1.0)(B3021)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U1,U2)(32;-1.0)(B3021)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U1,U2)(41;-1.0)(B3021)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U2,U2)(42;-1.0)(B3021)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U1,U1)(33;-1.0)(B3022)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U1,U2)(34;-1.0)(B3022)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U1,U2)(43;-1.0)(B3022)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U2,U2)(44;-1.0)(B3022)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U1L,U1L)(11;-1.0)(B3011)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(12;-1.0)(B3011)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(21;-1.0)(B3011)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U2L,U2L)(22;-1.0)(B3011)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U1L,U1L)(13;-1.0)(B3012)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(14;-1.0)(B3012)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(23;-1.0)(B3012)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U2L,U2L)(24;-1.0)(B3012)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U1L,U1L)(31;-1.0)(B3021)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(32;-1.0)(B3021)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(41;-1.0)(B3021)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U2L,U2L)(42;-1.0)(B3021)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U1L,U1L)(33;-1.0)(B3022)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(34;-1.0)(B3022)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(43;-1.0)(B3022)(-TEMP) 
+(GAMA,HP,HP,HALF)()(U2L,U2L)(44;-1.0)(B3022)(-TEMP) 
  
  TEMP   2   #  VARBL, SET NO.,  --- SPATIAL  SET (TEMP) 
 ()()(U1+U2)(1020;0)(B3001)(TEMP) 
+()()(U1+U2)(3040;0)(B3002)(TEMP) 
+(PEI)()()(1122;-1)(B211)(TEMP) 
+(PEI)()()(3344;-1)(B222)(TEMP) 
+(PEI)()()(1324;-1)(B221)(TEMP) 
+(PEI)()()(1324;-1)(B212)(TEMP) 
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#+(-)()()(0;1)(B200)(SRCT) 
+(BETAT,HT)()(U1,U1)(11;-1.0)(B3011)(TEMP) 
+(BETAT,HT)()(U1,U2)(12;-1.0)(B3011)(TEMP) 
+(BETAT,HT)()(U1,U2)(21;-1.0)(B3011)(TEMP) 
+(BETAT,HT)()(U2,U2)(22;-1.0)(B3011)(TEMP) 
+(BETAT,HT)()(U1,U1)(13;-1.0)(B3012)(TEMP) 
+(BETAT,HT)()(U1,U2)(14;-1.0)(B3012)(TEMP) 
+(BETAT,HT)()(U1,U2)(23;-1.0)(B3012)(TEMP) 
+(BETAT,HT)()(U2,U2)(24;-1.0)(B3012)(TEMP) 
+(BETAT,HT)()(U1,U1)(31;-1.0)(B3021)(TEMP) 
+(BETAT,HT)()(U1,U2)(32;-1.0)(B3021)(TEMP) 
+(BETAT,HT)()(U1,U2)(41;-1.0)(B3021)(TEMP) 
+(BETAT,HT)()(U2,U2)(42;-1.0)(B3021)(TEMP) 
+(BETAT,HT)()(U1,U1)(33;-1.0)(B3022)(TEMP) 
+(BETAT,HT)()(U1,U2)(34;-1.0)(B3022)(TEMP) 
+(BETAT,HT)()(U1,U2)(43;-1.0)(B3022)(TEMP) 
+(BETAT,HT)()(U2,U2)(44;-1.0)(B3022)(TEMP) 
  TEMP   3   #  VARBL, SET NO.,  --- BOUNDARY SET (TEMP) 
 ()(NUSL)()(0;1)(A200)(TEMP) 
+(-)(NUSL)()(0;1)(A200)(TRBC) 
  TEMP   5   #  VARBL, SET NO.,  --- BOUNDARY SET (TEMP) 
 ()()()(0;1)(A200)(SRCT) 
 
  PHI   1     #  VARBL, SET NO.,  --- SPATIAL  SET (PHI) 
 ()()(EPMN)(1;0)(B3001)(U1) 
+()()(EPMN)(3;0)(B3002)(U1) 
+()()(EPMN)(2;0)(B3001)(U2) 
+()()(EPMN)(4;0)(B3002)(U2) 
+()()(EPMN)(1122;-1)(B3011)(PHI) 
+()()(EPMN)(3344;-1)(B3022)(PHI) 
+()()(EPMN)(1324;-1)(B3021)(PHI) 
+()()(EPMN)(1324;-1)(B3012)(PHI) 
 
  PHI   3  #  VARBL, SET NO.,-- BOUNDARY SET (PHI) 
 (-)()()(1;0)(A200)(U1) 
+()()()(2;0)(A200)(U2)   
 
JACOBIANS 
  U1  U1  1  1  #  VARBL, VARDIF, SET, DIRECTION 1 
 ()()()(;1)(B200)() 
+(GAMA,HP,HP,HALF)()(U1,U1)(11;-1.0)(B3011)() 
+(GAMA,HP,HP,HALF)()(U1,U2)(12;-1.0)(B3011)() 
+(GAMA,HP,HP,HALF)()(U1,U2)(21;-1.0)(B3011)() 
+(GAMA,HP,HP,HALF)()(U2,U2)(22;-1.0)(B3011)() 
+(GAMA,HP,HP,HALF)()(U1,U1)(13;-1.0)(B3012)() 
+(GAMA,HP,HP,HALF)()(U1,U2)(14;-1.0)(B3012)() 
+(GAMA,HP,HP,HALF)()(U1,U2)(23;-1.0)(B3012)() 
+(GAMA,HP,HP,HALF)()(U2,U2)(24;-1.0)(B3012)() 
+(GAMA,HP,HP,HALF)()(U1,U1)(31;-1.0)(B3021)() 
+(GAMA,HP,HP,HALF)()(U1,U2)(32;-1.0)(B3021)() 
+(GAMA,HP,HP,HALF)()(U1,U2)(41;-1.0)(B3021)() 
+(GAMA,HP,HP,HALF)()(U2,U2)(42;-1.0)(B3021)() 
+(GAMA,HP,HP,HALF)()(U1,U1)(33;-1.0)(B3022)() 
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+(GAMA,HP,HP,HALF)()(U1,U2)(34;-1.0)(B3022)() 
+(GAMA,HP,HP,HALF)()(U1,U2)(43;-1.0)(B3022)() 
+(GAMA,HP,HP,HALF)()(U2,U2)(44;-1.0)(B3022)() 
+(GAMA,HP,HP,HALF)()(U1L,U1L)(11;-1.0)(B3011)() 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(12;-1.0)(B3011)() 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(21;-1.0)(B3011)() 
+(GAMA,HP,HP,HALF)()(U2L,U2L)(22;-1.0)(B3011)() 
+(GAMA,HP,HP,HALF)()(U1L,U1L)(13;-1.0)(B3012)() 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(14;-1.0)(B3012)() 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(23;-1.0)(B3012)() 
+(GAMA,HP,HP,HALF)()(U2L,U2L)(24;-1.0)(B3012)() 
+(GAMA,HP,HP,HALF)()(U1L,U1L)(31;-1.0)(B3021)() 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(32;-1.0)(B3021)() 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(41;-1.0)(B3021)() 
+(GAMA,HP,HP,HALF)()(U2L,U2L)(42;-1.0)(B3021)() 
+(GAMA,HP,HP,HALF)()(U1L,U1L)(33;-1.0)(B3022)() 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(34;-1.0)(B3022)() 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(43;-1.0)(B3022)() 
+(GAMA,HP,HP,HALF)()(U2L,U2L)(44;-1.0)(B3022)() 
 
  U1  U1  2  1  #  VARBL, VARDIF, SET, DIRECTION 1 
+()()(U1+U2)(1020;0)(B3001)() 
+()()(U1+U2)(3040;0)(B3002)() 
+()()(U1)(1;0)(B3100)() 
+()()(U1)(3;0)(B3200)() 
+(REI)()()(1122;-1)(B211)() 
+(REI)()()(1324;-1)(B212)() 
+(REI)()()(1324;-1)(B221)() 
+(REI)()()(3344;-1)(B222)() 
+(BETA,HT)()(U1,U1)(11;-1.0)(B3011)() 
+(BETA,HT)()(U1,U2)(12;-1.0)(B3011)() 
+(BETA,HT)()(U1,U2)(21;-1.0)(B3011)() 
+(BETA,HT)()(U2,U2)(22;-1.0)(B3011)() 
+(BETA,HT)()(U1,U1)(13;-1.0)(B3012)() 
+(BETA,HT)()(U1,U2)(14;-1.0)(B3012)() 
+(BETA,HT)()(U1,U2)(23;-1.0)(B3012)() 
+(BETA,HT)()(U2,U2)(24;-1.0)(B3012)() 
+(BETA,HT)()(U1,U1)(31;-1.0)(B3021)() 
+(BETA,HT)()(U1,U2)(32;-1.0)(B3021)() 
+(BETA,HT)()(U1,U2)(41;-1.0)(B3021)() 
+(BETA,HT)()(U2,U2)(42;-1.0)(B3021)() 
+(BETA,HT)()(U1,U1)(33;-1.0)(B3022)() 
+(BETA,HT)()(U1,U2)(34;-1.0)(B3022)() 
+(BETA,HT)()(U1,U2)(43;-1.0)(B3022)() 
+(BETA,HT)()(U2,U2)(44;-1.0)(B3022)() 
 
  U1  U2  2  1  #  
 ()()(U1)(2;0)(B3100)() 
+()()(U1)(4;0)(B3200)() 
 
   U1  PHI 1 1 # 
 ()()()(1;0)(B201)() 
+()()()(3;0)(B202)() 
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  U2  U1  2  1  #  
 ()()(U2)(1;0)(B3100)() 
+()()(U2)(3;0)(B3200)() 
 
  U2  U2  1  1  #  
 ()()()(;1)(B200)() 
+(GAMA,HP,HP,HALF)()(U1,U1)(11;-1.0)(B3011)() 
+(GAMA,HP,HP,HALF)()(U1,U2)(12;-1.0)(B3011)() 
+(GAMA,HP,HP,HALF)()(U1,U2)(21;-1.0)(B3011)() 
+(GAMA,HP,HP,HALF)()(U2,U2)(22;-1.0)(B3011)() 
+(GAMA,HP,HP,HALF)()(U1,U1)(13;-1.0)(B3012)() 
+(GAMA,HP,HP,HALF)()(U1,U2)(14;-1.0)(B3012)() 
+(GAMA,HP,HP,HALF)()(U1,U2)(23;-1.0)(B3012)() 
+(GAMA,HP,HP,HALF)()(U2,U2)(24;-1.0)(B3012)() 
+(GAMA,HP,HP,HALF)()(U1,U1)(31;-1.0)(B3021)() 
+(GAMA,HP,HP,HALF)()(U1,U2)(32;-1.0)(B3021)() 
+(GAMA,HP,HP,HALF)()(U1,U2)(41;-1.0)(B3021)() 
+(GAMA,HP,HP,HALF)()(U2,U2)(42;-1.0)(B3021)() 
+(GAMA,HP,HP,HALF)()(U1,U1)(33;-1.0)(B3022)() 
+(GAMA,HP,HP,HALF)()(U1,U2)(34;-1.0)(B3022)() 
+(GAMA,HP,HP,HALF)()(U1,U2)(43;-1.0)(B3022)() 
+(GAMA,HP,HP,HALF)()(U2,U2)(44;-1.0)(B3022)() 
+(GAMA,HP,HP,HALF)()(U1L,U1L)(11;-1.0)(B3011)() 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(12;-1.0)(B3011)() 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(21;-1.0)(B3011)() 
+(GAMA,HP,HP,HALF)()(U2L,U2L)(22;-1.0)(B3011)() 
+(GAMA,HP,HP,HALF)()(U1L,U1L)(13;-1.0)(B3012)() 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(14;-1.0)(B3012)() 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(23;-1.0)(B3012)() 
+(GAMA,HP,HP,HALF)()(U2L,U2L)(24;-1.0)(B3012)() 
+(GAMA,HP,HP,HALF)()(U1L,U1L)(31;-1.0)(B3021)() 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(32;-1.0)(B3021)() 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(41;-1.0)(B3021)() 
+(GAMA,HP,HP,HALF)()(U2L,U2L)(42;-1.0)(B3021)() 
+(GAMA,HP,HP,HALF)()(U1L,U1L)(33;-1.0)(B3022)() 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(34;-1.0)(B3022)() 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(43;-1.0)(B3022)() 
+(GAMA,HP,HP,HALF)()(U2L,U2L)(44;-1.0)(B3022)() 
 
  U2  U2  2  1  #  
+()()(U1+U2)(1020;0)(B3001)() 
+()()(U1+U2)(3040;0)(B3002)() 
+()()(U2)(2;0)(B3100)() 
+()()(U2)(4;0)(B3200)() 
+(REI)()()(1122;-1)(B211)() 
+(REI)()()(1324;-1)(B212)() 
+(REI)()()(1324;-1)(B221)() 
+(REI)()()(3344;-1)(B222)() 
+(BETA,HT)()(U1,U1)(11;-1.0)(B3011)() 
+(BETA,HT)()(U1,U2)(12;-1.0)(B3011)() 
+(BETA,HT)()(U1,U2)(21;-1.0)(B3011)() 
+(BETA,HT)()(U2,U2)(22;-1.0)(B3011)() 
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+(BETA,HT)()(U1,U1)(13;-1.0)(B3012)() 
+(BETA,HT)()(U1,U2)(14;-1.0)(B3012)() 
+(BETA,HT)()(U1,U2)(23;-1.0)(B3012)() 
+(BETA,HT)()(U2,U2)(24;-1.0)(B3012)() 
+(BETA,HT)()(U1,U1)(31;-1.0)(B3021)() 
+(BETA,HT)()(U1,U2)(32;-1.0)(B3021)() 
+(BETA,HT)()(U1,U2)(41;-1.0)(B3021)() 
+(BETA,HT)()(U2,U2)(42;-1.0)(B3021)() 
+(BETA,HT)()(U1,U1)(33;-1.0)(B3022)() 
+(BETA,HT)()(U1,U2)(34;-1.0)(B3022)() 
+(BETA,HT)()(U1,U2)(43;-1.0)(B3022)() 
+(BETA,HT)()(U2,U2)(44;-1.0)(B3022)() 
 
 
  U2 TEMP 2  1 # 
+(-,GRSH,RE2I)()()(;1)(B200)() 
 
   U2  PHI  1 1 # 
 ()()()(2;0)(B201)() 
+()()()(4;0)(B202)() 
 
 TEMP U1 2 1 # 
()()(TEMP)(1;0)(B3100)()+()()(TEMP)(3;0)(B3200)() 
 
 TEMP U2 2 1 # 
()()(TEMP)(2;0)(B3100)()+()()(TEMP)(4;0)(B3200)() 
 
  TEMP TEMP 1  1     # 
 ()()()(0;1)(B200)() 
 +(GAMA,HP,HP,HALF)()(U1,U1)(11;-1.0)(B3011)() 
+(GAMA,HP,HP,HALF)()(U1,U2)(12;-1.0)(B3011)() 
+(GAMA,HP,HP,HALF)()(U1,U2)(21;-1.0)(B3011)() 
+(GAMA,HP,HP,HALF)()(U2,U2)(22;-1.0)(B3011)() 
+(GAMA,HP,HP,HALF)()(U1,U1)(13;-1.0)(B3012)() 
+(GAMA,HP,HP,HALF)()(U1,U2)(14;-1.0)(B3012)() 
+(GAMA,HP,HP,HALF)()(U1,U2)(23;-1.0)(B3012)() 
+(GAMA,HP,HP,HALF)()(U2,U2)(24;-1.0)(B3012)() 
+(GAMA,HP,HP,HALF)()(U1,U1)(31;-1.0)(B3021)() 
+(GAMA,HP,HP,HALF)()(U1,U2)(32;-1.0)(B3021)() 
+(GAMA,HP,HP,HALF)()(U1,U2)(41;-1.0)(B3021)() 
+(GAMA,HP,HP,HALF)()(U2,U2)(42;-1.0)(B3021)() 
+(GAMA,HP,HP,HALF)()(U1,U1)(33;-1.0)(B3022)() 
+(GAMA,HP,HP,HALF)()(U1,U2)(34;-1.0)(B3022)() 
+(GAMA,HP,HP,HALF)()(U1,U2)(43;-1.0)(B3022)() 
+(GAMA,HP,HP,HALF)()(U2,U2)(44;-1.0)(B3022)() 
+(GAMA,HP,HP,HALF)()(U1L,U1L)(11;-1.0)(B3011)() 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(12;-1.0)(B3011)() 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(21;-1.0)(B3011)() 
+(GAMA,HP,HP,HALF)()(U2L,U2L)(22;-1.0)(B3011)() 
+(GAMA,HP,HP,HALF)()(U1L,U1L)(13;-1.0)(B3012)() 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(14;-1.0)(B3012)() 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(23;-1.0)(B3012)() 
+(GAMA,HP,HP,HALF)()(U2L,U2L)(24;-1.0)(B3012)() 
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+(GAMA,HP,HP,HALF)()(U1L,U1L)(31;-1.0)(B3021)() 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(32;-1.0)(B3021)() 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(41;-1.0)(B3021)() 
+(GAMA,HP,HP,HALF)()(U2L,U2L)(42;-1.0)(B3021)() 
+(GAMA,HP,HP,HALF)()(U1L,U1L)(33;-1.0)(B3022)() 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(34;-1.0)(B3022)() 
+(GAMA,HP,HP,HALF)()(U1L,U2L)(43;-1.0)(B3022)() 
+(GAMA,HP,HP,HALF)()(U2L,U2L)(44;-1.0)(B3022)() 
  
  TEMP TEMP 2  1    # 
+()()(U1+U2)(1020;0)(B3001)() 
+()()(U1+U2)(3040;0)(B3002)() 
+(PEI)()()(1122;-1)(B3011)() 
+(PEI)()()(3344;-1)(B3022)() 
+(PEI)()()(1324;-1)(B3021)() 
+(PEI)()()(1324;-1)(B3012)() 
+(BETAT,HT)()(U1,U1)(11;-1.0)(B3011)() 
+(BETAT,HT)()(U1,U2)(12;-1.0)(B3011)() 
+(BETAT,HT)()(U1,U2)(21;-1.0)(B3011)() 
+(BETAT,HT)()(U2,U2)(22;-1.0)(B3011)() 
+(BETAT,HT)()(U1,U1)(13;-1.0)(B3012)() 
+(BETAT,HT)()(U1,U2)(14;-1.0)(B3012)() 
+(BETAT,HT)()(U1,U2)(23;-1.0)(B3012)() 
+(BETAT,HT)()(U2,U2)(24;-1.0)(B3012)() 
+(BETAT,HT)()(U1,U1)(31;-1.0)(B3021)() 
+(BETAT,HT)()(U1,U2)(32;-1.0)(B3021)() 
+(BETAT,HT)()(U1,U2)(41;-1.0)(B3021)() 
+(BETAT,HT)()(U2,U2)(42;-1.0)(B3021)() 
+(BETAT,HT)()(U1,U1)(33;-1.0)(B3022)() 
+(BETAT,HT)()(U1,U2)(34;-1.0)(B3022)() 
+(BETAT,HT)()(U1,U2)(43;-1.0)(B3022)() 
+(BETAT,HT)()(U2,U2)(44;-1.0)(B3022)() 
 TEMP TEMP 3  1 #  
 ()(NUSL)()(0;1)(A200)() 
 
  PHI U1  1 1 # 
 ()()(EPMN)(1;0)(B3001)() 
+()()(EPMN)(3;0)(B3002)() 
  PHI U1  3 1 # 
 (-)()()(1;0)(A200)() 
 
  PHI U2 1 1 # 
 ()()(EPMN)(2;0)(B3001)() 
+()()(EPMN)(4;0)(B3002)() 
  PHI U2 3 1 # 
 ()()()(2;0)(A200)() 
 
  PHI PHI  1  1  #  VARBL, VARDIF, SET, ALL DIRECTIONS 
 ()()(EPMN)(1122;-1)(B3011)() 
+()()(EPMN)(3344;-1)(B3022)() 
+()()(EPMN)(1324;-1)(B3021)() 
+()()(EPMN)(1324;-1)(B3012)() 
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GROUP FREQUENCY 
      1 
SOLUTION TYPE 
  DELTA_Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
 
TITLE            **** TEMPLATE FILE FFij **** 
  2-D  PHI ALGORITHM  RETA  (12/05) 
 
RESIDUALS 
  RETA  2  # LOAD SET -{B} FOR RETA 
+(-,MULA)()()(0;2.5)(B200)(SSQ2) 
 
JACOBIANS 
  RETA  RETA  2  1  # RETA: D(RETA)/D(RETA) 
+()()()(0;1)(B200)() 
 
GROUP FREQUENCY 
    1 
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE FILE FFij **** 
  2-D  PHI ALGORITHM  RETB  (12/05) 
 
RESIDUALS 
  RETB  2  # LOAD SET -{B} FOR RETB 
+(-,MULB)()()(0;1.5)(B200)(SBQ2) 
 
JACOBIANS 
  RETB  RETB  2  1  # RETB: D(RETB)/D(RETB) 
+()()()(0;1)(B200)() 
 
GROUP FREQUENCY 
    1 
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE FILE FFij **** 
  2-D  PHI ALGORITHM  Xij  (12/05) 
 
RESIDUALS 
  X11  2  # LOAD SET -{B} FOR X_11 
+(-)()(U1)(1122;-1)(B3101)(U1) 
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+(-)()(U1)(1324;-1)(B3102)(U1) 
+(-)()(U1)(2142;-1)(B3201)(U1) 
+(-)()(U1)(3344;-1)(B3202)(U1) 
 
  X12  2  # LOAD SET -{B} FOR X_12 
+(-)()(U1)(1122;-1)(B3101)(U2) 
+(-)()(U1)(1323;-1)(B3102)(U2) 
+(-)()(U1)(3142;-1)(B3201)(U2) 
+(-)()(U1)(3344;-1)(B3202)(U2) 
 
  X22  2  # LOAD SET -{B} FOR X_22 
+(-)()(U2)(1122;-1)(B3101)(U2) 
+(-)()(U2)(1324;-1)(B3102)(U2) 
+(-)()(U2)(3142;-1)(B3201)(U2) 
+(-)()(U2)(3344;-1)(B3202)(U2) 
 
JACOBIANS 
  X11  X11  2  1  # X_11: D(X_11)/D(X_11) 
+()()()(0;1)(B200)() 
+(SIXTH)()()(1122;0)(B211)() 
+(SIXTH)()()(1324;0)(B212)() 
+(SIXTH)()()(3142;0)(B221)() 
+(SIXTH)()()(3344;0)(B222)() 
 
  X12  X12  2  1  # X_12: D(X_12)/D(X_12) 
+()()()(0;1)(B200)() 
+(SIXTH)()()(1122;0)(B211)() 
+(SIXTH)()()(1324;0)(B212)() 
+(SIXTH)()()(3142;0)(B221)() 
+(SIXTH)()()(3344;0)(B222)() 
 
  X22  X22  2  1  # X_22: D(X_22)/D(X_22) 
+()()()(0;1)(B200)() 
+(SIXTH)()()(1122;0)(B211)() 
+(SIXTH)()()(1324;0)(B212)() 
+(SIXTH)()()(3142;0)(B221)() 
+(SIXTH)()()(3344;0)(B222)() 
 
GROUP FREQUENCY 
    1 
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE FILE FFij **** 
  2-D  PHI ALGORITHM  filter flux  (12/05) 
 
RESIDUALS 
  FF11  2  # LOAD SET -{B} FOR FF11 
+(THIRD)()()(0;2)(B200)(X11) 
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  FF12  2  # LOAD SET -{B} FOR FF12 
+(THIRD)()()(0;2)(B200)(X12) 
 
  FF22  2  # LOAD SET -{B} FOR FF22 
+(THIRD)()()(0;2)(B200)(X22) 
 
JACOBIANS 
  FF11  FF11  2  1  # FF11: D(FF11)/D(FF11) 
 ()()()(0;1)(B200)() 
 
  FF12  FF12  2  1  # FF12: D(FF12)/D(FF12) 
 ()()()(0;1)(B200)() 
 
  FF22  FF22  2  1  # FF22: D(FF22)/D(FF22) 
 ()()()(0;1)(B200)() 
 
GROUP FREQUENCY 
    1 
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE FILE FBij **** 
  2-D  PHI ALGORITHM   TWS FLUXES  (12/05) 
 
RESIDUALS 
  FB11  2  # LOAD SET -{B} FOR FB_11 
+(-,HALF,HT)()(U1,U1)(1;0)(B3001)(U1) 
+(-,HALF,HT)()(U1,U1)(3;0)(B3002)(U1) 
+(-,FOURTH,HT)()(U1,U2)(2;0)(B3001)(U1) 
+(-,FOURTH,HT)()(U1,U2)(4;0)(B3002)(U1) 
+(-,FOURTH,HT)()(U1,U2)(1;0)(B3001)(U2) 
+(-,FOURTH,HT)()(U1,U2)(3;0)(B3002)(U2) 
 
  FB12  2  # LOAD SET -{B} FOR FB_12 
+(-,HALF,HT)()(U1,U2)(1;0)(B3001)(U1) 
+(-,HALF,HT)()(U1,U2)(3;0)(B3002)(U1) 
+(-,FOURTH,HT)()(U2,U2)(2;0)(B3001)(U1) 
+(-,FOURTH,HT)()(U2,U2)(4;0)(B3002)(U1) 
+(-,FOURTH,HT)()(U2,U2)(1;0)(B3001)(U2) 
+(-,FOURTH,HT)()(U2,U2)(3;0)(B3002)(U2) 
 
  FB21  2  # LOAD SET -{B} FOR FB_21 
+(-,FOURTH,HT)()(U1,U1)(2;0)(B3001)(U1) 
+(-,FOURTH,HT)()(U1,U1)(4;0)(B3002)(U1) 
+(-,FOURTH,HT)()(U1,U1)(1;0)(B3001)(U2) 
+(-,FOURTH,HT)()(U1,U1)(3;0)(B3002)(U2) 
+(-,HALF,HT)()(U1,U2)(2;0)(B3001)(U2) 
+(-,HALF,HT)()(U1,U2)(4;0)(B3002)(U2) 
 
  FB22  2  # LOAD SET -{B} FOR FB_22 
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+(-,FOURTH,HT)()(U1,U2)(2;0)(B3001)(U1) 
+(-,FOURTH,HT)()(U1,U2)(4;0)(B3002)(U1) 
+(-,FOURTH,HT)()(U1,U2)(1;0)(B3001)(U2) 
+(-,FOURTH,HT)()(U1,U2)(3;0)(B3002)(U2) 
+(-,HALF,HT)()(U2,U2)(2;0)(B3001)(U2) 
+(-,HALF,HT)()(U2,U2)(4;0)(B3002)(U2) 
 
JACOBIANS 
  FB11  FB11  2  1  # FB_11: D(FB_11)/D(FB_11) 
 ()()()(0;1)(B200)() 
 
  FB21  FB21  2  1  # FB_21: D(FB_21)/D(FB_21) 
 ()()()(0;1)(B200)() 
 
  FB12  FB12  2  1  # FB_12: D(FB_12)/D(FB_12) 
 ()()()(0;1)(B200)() 
 
  FB22  FB22  2  1  # FB_22: D(FB_22)/D(FB_22) 
 ()()()(0;1)(B200)() 
 
GROUP FREQUENCY 
    1 
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE FILE FDij **** 
  2-D  PHI ALGORITHM  laminar diffusion flux  (12/05) 
 
RESIDUALS 
  FD11  2  # LOAD SET -{B} FOR FD11 
+(-,TWO,REI)()()(1;0)(B201)(U1) 
+(-,TWO,REI)()()(3;0)(B202)(U1) 
 
  FD12  2  # LOAD SET -{B} FOR FD12 
+(-,REI)()()(2;0)(B201)(U1) 
+(-,REI)()()(4;0)(B202)(U1) 
+(-,REI)()()(1;0)(B201)(U2) 
+(-,REI)()()(3;0)(B202)(U2) 
 
  FD22  2  # LOAD SET -{B} FOR FD22 
+(-,TWO,REI)()()(2;0)(B201)(U2) 
+(-,TWO,REI)()()(4;0)(B202)(U2) 
 
JACOBIANS 
  FD11  FD11  2  1  # FD11: D(FD11)/D(FD11) 
 ()()()(0;1)(B200)() 
 
  FD12  FD12  2  1  # FD12: D(FD12)/D(FD12) 
 ()()()(0;1)(B200)() 
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  FD22  FD22  2  1  # FD22: D(FD22)/D(FD22) 
 ()()()(0;1)(B200)() 
 
GROUP FREQUENCY 
    1 
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE FILE FCij **** 
  2-D  PHI ALGORITHM  convective flux  (12/05) 
 
RESIDUALS 
  FC11  2  # LOAD SET -{B} FOR FC11 
+(-)()(U1)(0;1)(B200)(U1) 
 
  FC12  2  # LOAD SET -{B} FOR FC12 
+(-)()(U2)(0;1)(B200)(U1) 
 
  FC22  2  # LOAD SET -{B} FOR FC22 
+(-)()(U2)(0;1)(B200)(U2) 
 
JACOBIANS 
  FC11  FC11  2  1  # FC11: D(FC11)/D(FC11) 
 ()()()(0;1)(B200)() 
 
  FC12  FC12  2  1  # FC12: D(FC12)/D(FC12) 
 ()()()(0;1)(B200)() 
 
  FC22  FC22  2  1  # FC22: D(FC22)/D(FC22) 
 ()()()(0;1)(B200)() 
 
GROUP FREQUENCY 
    1 
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
 
 
TITLE            **** TEMPLATE TEMP.PHI **** 
   OMEGA - FROM DELXU  (1/99) 
 
RESIDUALS 
  OMGA   2    #  VARBL, SET NO.,  --- SPATIAL  SET (OMGA) 
 ()()()(2;0)(B201)(U1) 
+()()()(4;0)(B202)(U1) 
+(-)()()(1;0)(B201)(U2) 
+(-)()()(3;0)(B202)(U2) 
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JACOBIANS 
  OMGA OMGA  2  1  #  VARBL, VARDIF, SET, ALL DIRECTIONS 
 ()()()(0;1)(B200)() 
 
GROUP FREQUENCY 
      1  
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE TEMP.PHI **** 
   DELSQ PSI FROM OMEGA  (1/99) 
 
RESIDUALS 
  PSI   2  #  VARBL, SET NO.,  --- SPATIAL  SET (PSI) 
 (-)()()(0;1)(B200)(OMGA) 
 
JACOBIANS 
  PSI PSI  2  1 # VARBL, VARDIF, SET, ALL DIRECTIONS 
 ()()()(1122;-1)(B211)() 
+()()()(3344;-1)(B222)() 
+()()()(1324;-1)(B221)() 
+()()()(1324;-1)(B212)() 
 
GROUP FREQUENCY 
      1  
SOLUTION TYPE 
  Q 
  ILU_GMRES 
  IMPLICIT_EULER 
END 
 
TITLE            **** TEMPLATE TEMP.PHI **** 
  ENERGY NORM COMPUTATIONS, ALL VARIABLES/PARAMETERS  (1/99) 
 
RESIDUALS 
  DUNC   1   #                    TEMPORAL TERM IN {F(Q)}  
 ()()()(0;1)(B200)(-DUNC) 
 
JACOBIANS 
  DUNC DUNC   1 1   #             TIME TERM IN {F(Q)}  
 ()()()(0;1)(A200)() 
  DUNC DUNC   1 2   #             TIME TERM IN {F(Q)}  
 ()()()(0;1)(A200)() 
 
NORMS 
  OMGE  1  T                           ENERGY NORM FOR OMGA 
 (HALF,REI)()(OMGA)(1122;-1)(B211)(OMGA) 
 (HALF,REI)()(OMGA)(1324;-1)(B212)(OMGA) 
 (HALF,REI)()(OMGA)(1324;-1)(B221)(OMGA) 



 175

 (HALF,REI)()(OMGA)(3344;-1)(B222)(OMGA) 
  
  PSIE  1  T                           ENERGY NORM FOR PSI 
 (HALF)()(PSI)(1122;-2)(B211)(PSI) 
 (HALF)()(PSI)(1324;-2)(B212)(PSI) 
 (HALF)()(PSI)(1324;-2)(B221)(PSI) 
 (HALF)()(PSI)(3344;-2)(B222)(PSI) 
  
  U1E  1  T                           ENERGY NORM FOR U1 
 (HALF)()(U1)(1122;-1)(B211)(U1) 
 (HALF)()(U1)(1324;-1)(B212)(U1) 
 (HALF)()(U1)(1324;-1)(B221)(U1) 
 (HALF)()(U1)(3344;-1)(B222)(U1) 
  
  U2E  1  T                           ENERGY NORM FOR U2 
 (HALF)()(U2)(1122;-1)(B211)(U2) 
 (HALF)()(U2)(1324;-1)(B212)(U2) 
 (HALF)()(U2)(1324;-1)(B221)(U2) 
 (HALF)()(U2)(3344;-1)(B222)(U2) 
  
  PRSE  1  T                           ENERGY NORM FOR PRES 
 (HALF)()(PRES)(1122;-1)(B211)(PRES) 
 (HALF)()(PRES)(1324;-1)(B212)(PRES) 
 (HALF)()(PRES)(1324;-1)(B221)(PRES) 
 (HALF)()(PRES)(3344;-1)(B222)(PRES) 
  
  TMPE  1  T                           ENERGY NORM FOR TEMP 
 (HALF,PEI)()(TEMP)(1122;-1)(B211)(TEMP) 
 (HALF,PEI)()(TEMP)(1324;-1)(B212)(TEMP) 
 (HALF,PEI)()(TEMP)(1324;-1)(B221)(TEMP) 
 (HALF,PEI)()(TEMP)(3344;-1)(B222)(TEMP) 
  
  PHIE  1  T                           ENERGY NORM FOR PHI 
 (HALF)()(PHI)(1122;-1)(B211)(PHI) 
 (HALF)()(PHI)(1324;-1)(B212)(PHI) 
 (HALF)()(PHI)(1324;-1)(B221)(PHI) 
 (HALF)()(PHI)(3344;-1)(B222)(PHI) 
  
GROUP FREQUENCY 
      1 
SOLUTION TYPE 
  DELTA_Q 
  FACTORED_GAUSS_ELIMINATION 
  IMPLICIT_EULER 
 
END 
 



 176

TITLE       **** THERMAL CAVITY  MOD.CAV **** (1/99) 
  PHI THERMAL CAVITY 
INTEGRATION FACTORS 
   0.       $   INITIAL_TIME 
   6.E6     $   FINAL_TIME 
   1.0E-4   $   PROBLEM_CONVERGENCE_CRITERIA 
   0.20     $   MAXIMUM_CHANGE_IN_Q_(DQ) 
   0.02   $   INITIAL_TIME_STEP 
   1.0     $   TIME_STEP_MULTIPLIER 
   .02      $   MAXIMUM_TIME_STEP 
   0        $   CRITERIA_TO_RAISE_MAX_TIME_STEP 
   500       $   MAXIMUM_NUMBER_OF_STEPS 
   10       $   MAXIMUM_NUMBER_OF_ITERATIONS_PER_STEP 
   1.0E-3   $   ITERATION_CONVERGENCE_CRITERIA 
   0.5      $   THETA_IMPLICITNESS_FACTOR 
#  1.0      $   THETA_IMPLICITNESS_FACTOR 
   1.       $   CONVERGENCE_VARIABLE 
GLOBAL SCALARS 
  [ 0. 1. -1. 0. 0.  $  HT ONE MONE REI RE2I 
    0. 0. .5 0. 0.0  $  GRSH PEI HALF SPHISW BETAT 
    0. 2.0 3. .1666 .3333  $  BETA TWO PLTYPE SIXTH THIRD 
    0.08333 0.041666 0.0 0.1 0.0  $  OTI TFI RENO CSS MULS 
    0.0 0.17 4.0 0.0 0.17  $  MULA CSL FOUR MULB CSB 
    0.25 0. 0. ]  $  FOURTH GAMA HP 
MATERIALS 
    2      1 
  [ 0.  ] $  DUM1 
  [ 0.  ] T  DUM1 
OTHERS 
  0  20  T  ISCALR(20) INVDLT 
      1  T  INVDLT 3 = DIVIDE THRU BY HP and modify step size using dq 
   0 10            T  ISCALR(10) 
   1               T  IETKJA 
   0 13            T  ISCALR(13) 
   8000            T  ITRMAX 
  7.              T VECTOR 7 
$     COMMON /CTHERM/ 
$    1    ALC,      GAMMAF,       AEXT0,       AEXT1,       AEXT2, 
       1.         1.4          0.0          0.0          0.       # BGU 
$    2   UREF,        AREF,      GASCON,        PREF,       PZERO, 
     3.63308E-01  0.         4.972E4     2.1168E3     2.1168E3    # BGU 
$    3 CONDCT,      GRAVCN,      SPHEAT,       VISCK,         XMW, 
       4.175889E-6  32.17398   .237    1.6617525E-4     28.95748   # 
BGU 
$    4   TREF,        TMAX,        TMIN,       TZERO,      DELTEM, 
#    Ra1.0E6 
#        67.4515   .3187800E-0  -.3187800E-0    459.6     0.        # 
BGU 
#    Ra3.4E6 
       67.4515   1.08333E-0    -1.08333E-0    459.6     0.        # BGU 
#    Ra3.4E7 
#       67.4515   1.08333E+1    -1.08333E+1    459.6     0.        # 
BGU 
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#    Ra3.4E8 
#       67.4515   1.08333E+2    -1.08333E+2    459.6     0.        # 
BGU 
#    Ra6.2E8 
#       67.4515   .3187800E+3    -.3187800E+3    459.6     0.        # 
BGU 
#    test Ra6.2E8 
#       67.4515   .6187800E+4    -.6187800E+4    459.6     0.        # 
BGU 
$    5    BTU,      XMAREF,       XMAIN,      XMAOUT,      TINTFT, 
       778.0       0.          0.          0.          12.        # BGU 
$    6     CF,        HREF,       HZERO,       CEXT1,       CEXT2, 
       0.          0.          0.          0.          0.         # BGU 
$    7   SREF,        SMAX,        SMIN,       SZERO,      DELSAL, 
       0.          0.          0.          0.          0.         # BGU 
$    8  DEXT1,       DEXT2,       DEXT3,       DEXT4,       DEXT5, 
       0.          0.          0.          0.          0.        T 
$    9 ZXT(60) 
#     You can add (or replace) variables that you have incorporated 
#        into your 'hooks' files. 
#     Numeric entries are free format. 
#     Entries, such as AEXT1 etc. are open for your use. 
#  N.B.  ALC is the ONLY variable used in the 'main' subroutines. 
#          It is set to 1.0, if you do not set it here. 
#          It MUST be in position 1 in this COMMON block. 
#   END OF CTHERM 
#     COMMON /WALLFN/ TINTPR(100),THKNES(100),SKNFRN(100),TMHICK(100) 
PRINT 
    41    201     1   # GRID SIZE    TOTAL OF    8241 NODES 
                 50   # PRINT INTERVAL (STEPS) 
          -1    41    # I WINDOW 
           1    201   # J WINDOW 
           1     1    # K WINDOW 
NONE # VARIABLES IN COUT 
NONE # VARIABLES FIRST STEP ONLY 
((1P,8(1X,5E14.6/),1X,E14.6)) # FORMAT FOR 33x33 
GRAPHICS 
#  [ X1 X2 TEMP U1 U2 SPHI PRES OMGA PSI T X11 X12 X22 FF11 FF12 FF22 
#    FD11 FD12 FD22 FC11 FC12 FC22 FB11 FB12 FB21 FB22 S11 S12 S22  
#    RETS FS11 FS12 FS22 S33 S44 RETA FL11 FL12 FL22 SSQ SSQ2 XB1 XB2  
#    SBQ2 RETB SG11 SG12 SG22 ] 
   [ X1 X2 TEMP U1 U2 PHI SPHI PRES OMGA PSI OMGE PSIE U1E U2E PRSE  
     TMPE  ] 
# X1 X2 TEMP U1 U2 PHI SPHI PRES OMGA PSI OMGE PSIE U1E U2E PRSE TMPE  
T 
THREE_INTEGER    T  INTEGER PRINT FIELD 
# [ TEMP U1 U2 SPHI PRES OMGA PSI T X11 X12 X22 FF11 FF12 FF22 
#   FD11 FD12 FD22 FC11 FC12 FC22 FB11 FB12 FB21 FB22 S11 S12 S22 
#   RETS FS11 FS12 FS22 S33 S44 RETA FL11 FL12 FL22 SSQ SSQ2 SBQ2 XB1 
#   XB2 RETB SG11 SG12 SG22 ] 
# TEMP U1 U2 PHI SPHI PRES OMGA PSI X1 X2 OMGE PSIE U1E U2E PRSE TMPE  
T 
  [ TEMP U1 U2 PHI SPHI PRES OMGA PSI X1 X2 OMGE PSIE U1E U2E PRSE  
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    TMPE ] 
DEBUG 
 0 $ STEP NUMBER TO PRINT ALL ITERATIONS 
 NONE $ TYPE OF DEBUG PRINT 
 1 $ ITERATION NUMBER 
 1089,1,1 $ I,J,K  LOCATION, (K=0, ALL PLANES) 
 ALL $ VARIABLE OR ALL 
 ALL $ TERM NUMBER OR (- FOR SET NO.), OR ALL 
BOUNDARY CONDITIONS 
 WALL_NS  1 [ 41I1 1 199I41 42 199I41 82 41I-1 8241 ] 
 DIRI_T   1 [ 201I41 1 201I41 41 ] 
INITIAL CONDITIONS 
 [201(41*0.)] $ PRES 
 [201(41*0.)] $ U1 
 [201(41*0.)] $ U2 
# [S 101(1.08333. 6R1.11111 0.069116 4R1.25 0. 4R.8 -0.069116 
#   6R0.9 -1.08333) S-10. ] $ TEMP # Ra 3.4 
#[S 201(1.08333 39*0.0 -1.08333) S-10. ] $ TEMP # Ra3.4E5  
#[S 201(1.08333 20R1.0 0.0 20R1.0 -1.08333) S-10. ] $ TEMP # Ra3.4E5  
# [S 201(61.87800 20R1.0 0.0 20R1.0 -61.87800) S+100. ] $ TEMP # 
Ra6.2E8  
# [S 201(3.187800 20R1.0 0.0 20R1.0 -3.187800) S+100. ] $ TEMP # 
Ra6.2E8  
 [S 201(1.08333 20R1.0 0.0 20R1.0 -1.08333) S-1. ] $ TEMP # Ra3.4E6  
# [S 201(1.08333 20R1.0 0.0 20R1.0 -1.08333) S+10. ] $ TEMP # Ra3.4E7  
# [S 201(1.08333 20R1.0 0.0 20R1.0 -1.08333) S+100. ] $ TEMP # Ra3.4E8  
 [201(41*0.)] $ PHI 
 [201(41*0.)] $ OMGA 
 [201(41*0.)] $ PSI 
 [201(41*0.)] $ UM11 
 [201(41*0.)] $ UM12 
 [201(41*0.)] $ UM22 
 [201(41*0.)] $ UMAG 
 [201(41*0.)] $ NUSL 
 [201(41*0.)] $ SPHI 
 [201(41*0.)] $ SPHL 
 [201(41*0.)] $ TAU2 
 [201(41*0.)] $ SRCT 
 [201(41*1.)] $ EPMN 
 [201(41*1.)] $ RET 
 [201(41*0.)] $ OMGE 
 [201(41*0.)] $ PSIE 
 [201(41*0.)] $ PHIE 
 [201(41*0.)] $ U1E 
 [201(41*0.)] $ U2E 
 [201(41*0.)] $ PRSE 
 [201(41*0.)] $ TMPE 
 [201(41*0.)] $ SCAL 
 [201(41*0.)] $ OTLN 
 [201(41*0.)] $ MTRL 
 [201(41*0.)] $ DETJ 
 [201(41*0.)] $ DETC 
 [201(41*0.)] $ ETKJ 
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 [201(41*0.)] $ EJK2 
 [201(41*0.)] $ EJK3 
 [201(41*0.)] $ EJK4 
 [201(41*0.)] $ EJK5 
 [201(41*0.)] $ EJK6 
 [201(41*0.)] $ EJK7 
 [201(41*0.)] $ EJK8 
 [201(41*0.)] $ EJK9 
 [201(41*0.)] $ PREL 
 [201(41*0.)] $ U1L 
 [201(41*0.)] $ U2L 
 [201(41*0.)] $ TEML 
 [201(41*0.)] $ PHIL 
 [201(41*0.)] $ OMGL 
 [201(41*0.)] $ PSIL 
 [201(41*0.)] $ DUNL 
 [ 201(0. 12R1.11111 .181 8R1.25 .5 8R.8 .819 12R0.9 1.0) ] $ X1    74 
 [ -41(0. 30R1.11111 .63 70R1.0 4. 70R1.0 7.37 30R0.9 8.) ] $ X2    75 
#[65(0. 32R1.0 .5 32R1.0 1.0)] $ X1 # INTERPOLATED 
#[-65(0. 32R1.0 .5 32R1.0 1.0)] $ X2 # INTERPOLATED 
 [201(41*0.)] T ONES 
END 
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