Abstract

Traditionally, finite element methods generate progressively higher order accurate
solutions by use of higher degree trial space bases for the weak statement construc-
tion. This invariably yields matrix equations of greater bandwidth thus increasing
implementational and computational costs.

A new approach to designing high order - defined here to exceed third - accurate
methods has been developed and tested. The systematic construction of progressively
higher order spatial approximations is achieved via a modified equation analysis,
which allows one to clearly identify correction terms appropriate for a desired accuracy
order. The resulting perturbed PDE is shown to be consistent with the Taylor Weak
Statement formulation. It confirms the expected high order of spatial accuracy in
TWS constructions and provides a highly efficient dispersion error control mechanism
whose application is based on the specifics of the solution domain discretization and
physics of the problem. A distinguishing desirable property of the developed method
is solution matrix bandwidth containment, i.e. bandwidth always remains equal to
that of the linear basis (second order) discretization. This permits combining the
computational efficiency of the lower order methods with superior accuracy inherent
in higher order approximations.

Numerical simulations compare performance of the developed method to that of

the GWS and TWS formulations. Uniform mesh refinement convergence results con-



firm the order of truncation error for each method. High order formulation is shown
to require significantly fewer nodes to accurately resolve solution gradients for con-
vection dominated problems. Benchmark problem applications for the compressible
Euler and incompressible Navier-Stokes equations complete the manuscript. In both
cases the developed high order formulation is shown to result in more accurate solu-
tions on coarser discretizations, thus preserving the design trends illustrated for the

model advection-diffusion equation.
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Chapter 1
Introduction.

1.1. Finite differences approach.

High order methods can generate highly accurate results for problems with smooth
data, hence solutions for which the physical domain is smoothly mapped onto the
computational space. Invariably, this is accomplished by increasing the width of the
computational stencil, which yields matrix equations of greater bandwidth. This
increases the implementational cost, but by lowering the truncation error can reduce
the number of nodes needed to obtain a given accuracy numerical solution.

Finite difference methods treat partial derivative entries of a given PDE separately.
The value of each derivative at a generic computational node is approximated by a
linear combination of function values at the adjacent nodes. Consequently, coefficients
of this combination are derived by matching Taylor series coefficients. For example,

in one dimension

0
g(;) = a1Qj-1 + a2Qj + a3Q 1
(1.1)
32
% = a4Qj-1 + a5Q; + asQj41

and coefficients a; can be shown to be
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a‘lz_ﬁa 0,2:0, a‘3:ﬁ7
(1.2)
1 2 1
=7 @5 = "33 4% =73

Wider computational stencil therefore permits higher order accuracy by introduc-

ing more unknowns into the approximation expression, as in Thomas (1995)

a1Qj 2+ Q1 + azQ; + a4Qj1 + a5Qj42 =0 (1.3)

Generalization of this approach is provided by Pade or compact finite difference
schemes (Kopal, 1961, Lomax, 1976)

Alternatively, a higher order approximation for select elliptic problem statements
can be achieved using Hermitian type discretization methods (Collatz, 1960) without
adding additional pivotal points. In this case, nodal values of high order derivatives

are used to introduce more coefficients in the stencil expressions as

a1Qj-1 + axQj + a3Qjy1 + G4Q;71 + G5Q’j, + CLGQ;-IH =0 (1.4)

Once stencil coefficients are determined by Taylor series analysis, solution matrix
bandwidth expansion is contained by expressing high order derivatives via nodal
function values. Unless this transition can be provided by the partial differential
equation itself, solution matrix bandwidth must be expanded to accommodate the

extra unknowns resulting from introducing nodal values of high order derivatives into
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the stencil expression. Here, high order approximation again comes at a computa-
tional price of solving matrix equation of greater bandwidth. In particular, this is
clearly the case when considering the advection-diffusion equation. It does not pro-
vide a required dependence between derivatives and corresponding function values,
rendering Hermitian methods ineffective in reducing computational costs.
Approximation can be further optimized by introducing additional theoretical
considerations, suitable for a particular physical problem. Optimized compact finite
difference schemes (Tam and Webb, 1993, Kim and Lee, 1996, Visbal and Gaitonde,
1998) utilize Fourier analysis to achieve maximum resolution by minimizing dispersive
(phase) errors in the differencing approximation. Resolution of abrupt boundary
layers in convection dominated problems and shock-like discontinuities caused by
local non-linearities can be enhanced by promoting the scheme’s ”monotonicity”.
Thus the analysis of a normalized-variable diagram leads to the restrictions being
placed on time-averaged normalized face values of the solution resulting in the ULTI-
MATE strategy (Leonard, 1991) for correcting the numerical solution, which can be
applied for arbitrary high order schemes. Similarly, comparison of relevant divided
differences to select the locally smoothest stencil, used on the reconstruction stage
of the interpolation procedure described by Shu (1997) for ENO and WENO type

schemes, yields highly accurate solutions.
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1.2. Finite element approach.

Finite element methods proceed in a somewhat different manner. The cornerstone
of the theoretical development is the ”weak form” formulation (Baker, 1983) requiring
the measure of the error in the approximate solution to vanish in an integrated sense.
Introduction of the solution domain discretization further replaces the continuous
solution approximation with its appropriate piecewise-continuous form, resulting in
generation of the ”weak statement” extremum, leading to a precise derivation of the
computational stencil expression upon specification of suitable test and trial basis
function sets. Higher order of approximation is achieved by general or local embedding
of higher degree interpolants (p-refinement) (Baker, 1983, Oden, 1994). Method
performance can be enhanced by optimizing test and trial basis function sets leading
to various Petrov-Galerkin approximations (Brooks and Hughes, 1980, Chaffin and
Baker, 1995).

Optimal h — p finite element methods (Oden, 1994) use bilinear form symmetriza-
tion to derive problem specific test and trial functions. The existence of an accurate
fine mesh solution to a given problem is assumed, and the corresponding optimal
test and trial functions are designed to match this solution at the nodes of a signif-
icantly coarser grid. This leads to the ”extrasuperconvergence” result which allows
for an a posteriori error estimate on each of the finite elements of the solution domain

discretization yielding an adaptive mesh refinement strategy.
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Early Petrov-Galerkin methods (Heinrich et.al., 1977, Christie and Mitchell, 1978)
introduced excessive amounts of diffusion into the numerical solution and SUPG
methods (Brooks and Highes, 1980) were designed to counter this problem. Extension
of the Lax-Wendroff method (Lax and Wendroff, 1960), which uses the governing
equation to cancel error terms in time and space to a finite element formulation, lead
to development of the Taylor-Galerkin method of Donea (1984), which was generalized
as the Taylor weak statement (TWS) by Baker and Kim (1987). Detailed investigation
of the TWS method performance for various multi-dimensional problems can be found
in Chaffin and Baker (1995) and Chaffin (1997).

Matrix/static condensation techniques, unique for finite element formulations,
provide another powerful tool for method optimization. The SGM method of Roy
and Baker (1997, 1998), and Galerkin methods with bubble functions (Baiocchi and
Brezzi, 1993), successfully use this approach to promote solution stability and mono-
tonicity. Finite element methods specificly designed for shock-capturing were shown
to significantly improve the method ability to resolve sharp solution discontinuities.
Examples include discontinuous Galerkin methods (Hu and Shu, 1998) and a non-
linear element-upstream weak statement (NEWS) algorithm (Iannelli, 1996, 1999),

that achieve accurate monotone solutions for various conservation law system forms.
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1.3. This dissertation.

Overall, upon discretization of the solution domain, virtually all high order meth-
ods result in matrix equations with larger bandwidth thus increasing the computa-
tional cost. Such wider stencils cannot be implemented at the boundaries, leading
to a local loss of accuracy, especially in multi-dimensional cases, hence requiring ad-
ditional theoretical consideration. Grid generation around complex geometries also
becomes extremely complicated, since a smooth grid is dictated by the design of high
order methods.

In this dissertation a method resolving this dilemma is developed and tested. The
theory provides high order accurate solutions at no added computational cost, by
retaining the solution matrix bandwidth of the second order methods. This is po-
tentially of significance, in simplifying multi-dimensional grid generation procedures
necessary for the implementation of high order methods. This development utilizes
the ideas of "modified” partial differential equation analysis of Warming and Hyett
(1974) (see also Shokin (1983)) to derive the problem-specific computational stencil
coefficients appropriate for the desired order of accuracy. This allows for avoiding
implementational difficulties encountered by Hermitian type methods.

The systematic construction of progressively higher order spatial approximations
is achieved via a modified equation analysis, which allows one to clearly identify cor-

rection terms appropriate for a desired accuracy order. The resulting perturbed PDE
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is shown to be consistent with the Taylor Weak Statement formulation. It confirms
the expected high order of spatial accuracy in TWS constructions and provides a
highly efficient dispersion error control mechanism whose application is based on the
specifics of the solution domain discretization and physics of the problem.
Benchmark problem applications for non-linear Euler and Navier-Stokes equa-
tions document the performance of the disturbed equation methods developed in this

research.
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Chapter 2
Weak statement formulation.

2.1. Error minimization via a weak statment.

Consider the linear scalar multi-dimensional advection-diffusion equation with the

corresponding Dirichlet and Neumann boundary conditions

dq(x,t
Lla(x, 1) = 2190 4 ) gl
(2.1)
— eV -Vq(x,t) =0 in Q€R"xR!
g=q  on 04 (2.2)
dq
a—n = g(X) on 892, 891 U 392 = 39 (23)

where viscosity €, velocity u(x), and boundary data g(x), g, are given.
Since in general the approximate solution ¢V (x, ¢) will not coincide with the exact

solution ¢(x, t), one can express the associated error in the numerical solution as
eN(Xa t) = Q(X, t) o qN(X7 t) (24)

One possible measure of the size of e” (x, ¢) can be obtained by substituting (2.4)

into (2.1), which yields the following differential equation for the error

L(e"(x,t)) = L(g(x, 1)) = L(¢" (x,1)) = = L(¢" (x, 1)) (2:5)
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The weak form construction requires the measure of the approximation error,
which from the above equation is L(g"™ (x, t)), to vanish in an overall integrated sense,

resulting in

WR(L(" (1) = [ (oL (x,t)d2 =0 (2.

Here w(x) € H'(Q) is an arbitrary non-zero test function. Substituting (2.1) into

(2.6) and applying the Green-Gauss theorem yields

WF(L(¢"(x,1))) =

/Q [w(x) <% + u(x) .VqN(x,t)> +eVw(x) - Vg (x,t) | dO (2.7)

N
—/ o) 2D 150, 20 e(x) € HYQ),  w(x) =0 € o0,
90> al’l

2.2. Solution domain discretization
The introduction of the solution domain discretization Q" replaces the continu-

ous solution approximation ¢ (x,t) and test function w(x) with their appropriate

piecewise-continuous forms

g(x,t) = ¢ (x, 1) = > du(x)Qu(t) = {Tx)HQ(1)} (2.8)

-

wx) 2w (x,8) = Y (X)W (1), = (X HW (1)} (2.9)

Here x(x), % (x) € V;, C H'(Q) are the test and trial functions with compact support;
{Q(t)} are the unknown nodal values of the approximate solution, and coefficients
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{W(t)} are still absolutely arbitrary. Since (2.7) holds for any interpolation w’(x),
the extremum of (2.7) with respect to the arbitrariness, now only the coefficients
{W(t)}, must vanish producing the weak statement (WS). Substituting (2.8) and

(2.9) into (2.7) yields
WS"(L(g™ (x,1))) =

[ e (1w 40 4 u) - vpweoy (@) ) ao 2.10)

T / eV{x(9) - TIERON Q1) - / () U ()} T{G}do0, = 0

02

where {G'} are the nodal values of the bounday data.
2.3. Element assembly procedure.

The form of (2.10) as a matrix sum of integrals, allows for subdivision of the domain
Q" of the integrals in (2.10) into N finite elements €,. The integral entries in (2.10)
may then be computed individually on each element and summed or ”assembled” over
the domain. Because the compact interpolation (2.8) and (2.9) are at least piecewise-
continuous, only elements adjacent to a node are assembled into the equation for
that node, thus leading to the concept of the finite element stencil, finite element
counterpart of the finite difference scheme.

The end point of the formulation involves evaluation of the integrals in (2.10),
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which in turn requires specification of test and trial function sets. Denoting

Kl = [ =V} V{Ee) ag, .11
M) = [ {0} (960} ", 212
U1 = | {30} ux)V{¥(0} " a0 213

one obtains (10) in the matrix form
WL 0 = 5, (0G0 4 s kL go) - 1) = 10 )

where S, denotes the assembly operator and {b}. is the known boundary data. Per-

forming the assembly results in an ordinary differential equation system

d{@}

[M]=7=

+{RQ} =0 (2.15)

where [M] is the assembly of the element matrices [M]. evaluated on each element
Q. and {RQ} is finite element evaluation of all other terms including all boundary
conditions.

In advancing the solution over the time interval At = t"*! — " one can enjoy
the theoretical advancements made by the theory of ordinary differential equations,
while accounting for the additional details brought upon by a particular spatial dis-

cretization. For example, defining the variable-implicit family of single-step (Euler)
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ODE algorithms via the introduction of the Taylor series expansion

d{@}
dt

A d?{Q}
2 d

o+ O(AF)  (2.16)

{Q(thrl)} = {Q}nJrl = {Qn} + At |n+9 +

For § = 0, (2.16) is explicit and first order accurate; for § = 1, (2.16) is backwards
implicit and of the first order, while if # = 0.5, (2.16) produces the second order

accurate trapezoidal rule. For arbitrary ¢ substituting (2.15) into (2.16) yields

{Q}TL+1 = {Q}n - At[M]il{RQ}nJre
(2.17)
At? L, d{RQ}

- S

Neglecting d{RQ}/dt at this point, multiplying through by [M] and collecting the

lnto + O(LE?)

terms produces a potentially non-linear algebraic equation system

{FQ} = [M{Qni1 — Qu} + AH{RQ}nso = {0} (2.18)

Equation (2.18) is the computable GW S" finite element form, which in the linear
case can be solved directly to provide a numerical "nodal” solution to the original
equation. In the non-linear case one can proceed by employing a Newton iteration

algorithm as

[JACT{oQ} " = —{FQ}” (2.19)
{FQY = [MKQpy, — @n} + AH{RQ, (2.20)
p_ HFQY {RQ}”
[JACP = o [M] +0At 901 (2.21)
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{QYA = (@ + 001! = {Q}n + 3_{3Q}™ (2.22)

where p = 0,1,2, ... is the integer index for iteration and n + 1 is the time station
where the nodal solution is sought. The iteration converges when max|{0Q}**!| < &g
(Baker, 1997), where ¢ is the convergence requirement. Since the Newton Jacobian
[JAC] is non-singular, this occurs when maz|{ FQ}?| < 0, where ¢ is an acceptable

approximation to zero.
2.4. Accuracy and asymptotic convergence.

For any finite element approximate solution ¢”, the semi-discrete approximation error
is
eh(xa t) = Q(l', t) - qh(xa t) (223)

h

and since both ¢ and ¢" are continuous, the error e” is also continuous. The er-

ror estimate employs resolution of e€(z,t) into spatial and temporal semi-discrete

components. Using functional notation for clarity (Baker, 1997)
o(jAx,nAt) = e (jAr,t) + 7(j Az, nAt) (2.24)
where spatial semi-discretization error is

e"(jAx,t) = q(z,t) — ¢"(jAz, 1) (2.25)
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while the temporal truncation error is
T(jAz, nAt) = ¢"(jAz, t) — Q;(nAt) (2.26)
and the fully discrete error is given by
o(jAx,nAt) = q(x,t) — Q,;(nAt) (2.27)
For any choice of norm the triangle identity results in
loll = lle" + 7l < lle"]| + |71 (2.28)

It can be shown (Oden and Reddy, 1976) that for v = 0 in (2.1) and for the Euler
explicit time integration # = 0 the finite element semi-discrete approximation error

measured in H' Sobolev norm satisfies

le" Ol @) < CLhF(lg(@)l (@) + C2Atlla(to) o) (2.29)

Here, h is the measure of the mesh size, At is the time step, C; and Cy are constants
independent of h and k is the polynomial degree of the selected finite element basis.

In the case where u > 0 and ¢ = 0 this estimate is recast as

" (Ol () < Crh*Hq() | e () + Colrtllq(to) L (@)
(2.30)

t
+Coh [ la(r) s oydr
to
This estimate states that the finite element semi-discrete error will proceed to
zero in H'! as the measure of the mesh independent of the polynomial degree k of the

selected basis.
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This theoretical prediction can be compared with an finite difference order of

accuracy estimate by expressing it in the energy semi-norm as
le" )l m@ < CER*(IIsllF-1 () + I1Pl75-200) + G AT Olla(to) 3y (2:31)

stating that an { Ny} finite element basis algorithm is 2k order accurate in space and

first- or second-order accurate in time dependent on 6.
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Chapter 3
Undetermined coefficients approach.

3.1 High order formulation. Theoretical approach

We first consider a one-dimensional steady-state case, for a constant velocity
u(x)=u and Dirichlet boundary conditions. Equations (2.1),(2.2),(2.3) are rewrit-

ten as

_ ) da(a)

s o= 0 in x€(0,1) (3.1)

q(0)=0 q(1)=1 on 09 (3.2)

Note, the original PDE (2.1) reduces to an ordinary differential equation in this case.

The exact solution in the case u =1 is given by

1—e-

- 1
1—e:

q(x) (3.3)

and its behavior for various values of € is well known (see for example Fletcher, 1991,
Roy and Baker, 1997). For sufficiently small values of €, the solution remains constant
over nearly all of the solution domain, while forming a ”"boundary” layer in a thin
region of the domain, whose thickness is dictated by the boundary conditions and
the value of viscosity parameter . In general, a very fine mesh is required to ade-
quately resolve the "boundary” layer on a uniform mesh, while coarse (uniform) mesh
solutions produce spurious 2Axz oscillations signaling the discretization’s inability to
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resolve this layer. Alternatively, a non-uniform mesh can be used for obtaining an
acceptable solution. Unfortunately, the layer location must be known in this case.
For a given one-dimensional problem (3.1),(3.2), the discrete weak statement for-

mulation becomes

WS" = Se([U + K]e{Q}e) = Se([A(h, £)]{Q}e) = {0} (3.4)

For an arbitrary two-node finite element trial and test function sets {x(z)}, {¥(x)}
one can evaluate the element matrix [A], as a function of the element length h and
given data. A fully discrete equivalent of (3.4), obtained by assembling the element
matrix [A], on two adjacent elements and presented in a finite element stencil form

becomes

a1Qj-1+ a2Q; + a3Qjy1 =0 (3.5)

Here a;,7 = 1, 2,3 are the coefficients dependent on a specific choice of finite element
trial and test functions, and @Q); i, Q;, Q41 are the unknown nodal values of the
approximate solution.

Assuming a uniform mesh with Az = h, which is sufficiently small, and writing a

Taylor series expansion at node j yields

, Ok —— A"
(a1 + a2 +a3)Q; + hlaz — a1)Q; + E(a?’ +a1)Q; + Z (a3 — 01)HQ§' )
n=3,2

. W ) _
+Z(a3+a1)HQj =0

n=4,2
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Since in the end one desires to approximate equation (3.1), the general idea behind
all types of consistency, convergence, order of the method and accuracy estimates is

for a; in (3.6) to satisfy the following equations

a1+a2+a3:0

IS

a3 — a; = E (37)
2e
as + a|p = _ﬁ

As an example, solution of system (3.7) for the coefficients a; gives Galerkin lin-
ear basis coefficients that are consistent with a centered three-node finite difference
approximation, and clearly yields a second order method. If a higher order approx-
imation is desired, finite difference method proceeds by increasing the width of the

stencil to the form

a1Qj 2+ Q1 + azQ; + a4Qj1 + a5Qj42 =0 (3.8)

This introduces more coefficients and allows for solving more equations in (3.6), thus
increasing the order of the method.
Alternatively, higher order approximation can be obtained by considering the

following stencil (Collatz, 1960):

a1Qj-1 + a2Q; + a3Qji1 + a4Q;,1 + a5Q'j, + CLGQ;JA =0 (3.9)
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Here, more coefficients are introduced not by expanding the stencil, but by utilizing
nodal values of high order derivatives themselves. In order to reduce (3.9) to a
computable form, partial differential equation itself must be used to express high order
derivatives through nodal values of the numerical solution. Clearly, this is impossible
in a case of advection-diffusion equation, since it does not provide a relationship
between @Q; and nodal values of solution vector {Q}.

Finite element methods proceed by embedding higher degree basis functions, thus
also introducing more coefficients, and allowing for solving more equations in (3.6).
Thus, most approaches produce higher order methods at the price of solving a ma-
trix statement with larger bandwidth. At the same time, FD wider stencils cannot
be implemented at the boundaries, leading to a local loss of accuracy, especially in
multi-dimensional cases, and requiring additional theoretical consideration as well as
programming effort.

While Hermitian type methods provide a theoretical alternative to computational
stencil expansion, their implementation for different equation types is problematic.
We use the idea of "modified” partial differential equation analysis of Warming and
Hyett (1974) to develop a method which resolves this dilemma, and provides high
order accurate solutions at no added computational cost, by retaining the solution

matrix bandwidth of the second order methods. Towards this end, equation (3.7) is
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replaced with

a1+a2+a3:0

a3 — a; = E (310)

>

2¢e
a3+a1:—ﬁ+23

where B is a free parameter to be determined. Equation (3.6) therefore becomes

’ " " > Uh,nil n
uQy — <@+ BRQ5 + 3 ——Q)"

n=3,2
(3.11)
o (n) =, 2Bh" (n)
- =+ ) Q=0
n=4,2 n=4,2
Retaining only the terms of the order 1 and h? one obtains
’ " " u 9 "

uQ; — Q) + [BQj + =@ - 50 ] +HOT. =0 (3.12)

Equation (3.12) represents an ”infinite” order partial differential equation satisfied
by the nodal numerical solution {Q} (Warming and Hyett, 1960, Thomas, 1995). We
therefore can differentiate it repeatedly with respect to x , thus expressing higher
order derivatives present in (3.12), and then attempt to select parameter B which
would ”zero out” the term at h? in the "modified” equation (3.12) leading to a higher
order approximation of the equation to be solved.

Differentiating (3.12) with respect to z yields

" e m B . 1 9 "
Q; =—Q; —h* ZQJ' +6Qj —ﬁQj + H.O.T. (3.13)

u
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and substituting back into (3.12) one obtains

’ " [ Be u " £ 2z
u@; —£Q; + h? <7+8> Q; _EQj }

(3.14)

" Be
= —Q) HOT. =
] IMQ]}+ 0.1 =0

"2
- |20+ e

Since the goal at this point is to eliminate the term at h? in (3.12), one can neglect
the contribution produced by the h* term resulting from differentiating in (3.14) and
further concentrate only on the h? term in (3.12). Again, differentiating (3.12) twice
with respect to z, and remembering to neglect all terms of the order h* that result

from differentiation, leads to

" g
Q) =~ + HO.T. (3.15)
and substituting into (3.14)
’ " m [ B 1

It is interesting to note that neglecting higher order terms in (3.14) significantly
simplifies the task at hand, since we need only be concerned with the form of the actual
equation (3.1) itself in finding expressions for higher order derivatives, as illustrated
in (3.15).

It is clear now that setting

B=_—— 1
12¢ (3 7)
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n (3.16) results in a fourth order accurate method. One can now solve (3.10) for the

computational stencil coefficients

6heu + 122 4+ u?h? 122 + u?h?
gy = ————
12h2¢e ’ 2 6h2e

a; = —
(3.18)
6heu — 1262 — u?h?
12h2e
Of course, unlike conventional high order methods of the form (3.8), the width of the

a3 =

computational stencil in this case remains unchanged inducing no additional compu-
tational cost.

To obtain a sixth order accurate method, consider the following system

a1+a2+a3:0

S

asg — ap = E (319)
2e 2
az +a; = _ﬁ+2B+2Ah
where A and B are free coefficients to be determined. (3.6) now becomes
’ " 1z " > Uh,nil n > 26hn72 n
uQy — Qi + BRQj + AN'Q; + ) =@ = 3 = ra)”
n=3,2 ’ n=4,2 ’
(3.20)
2Bh - AMH?
2 =0
n=4,2 : n=4,2
and retaining only the terms of the order 1, h?, h*
uQ) - =Q; + h* [BQ) + Q) - 5Q;'|
(3.21)
ht A B R N+ HOT. =0
- {Q+120Q 360Q + Q ]+

34



Even though this expression appears to require greater effort when determining
free parameters, it can be greatly simplified by the fact that the terms of the order
h?% in both (3.12) and (3.21) are exactly the same, as dictated by the selection of the

order of the new free parameter A in (3.19). Therefore setting B as in (3.17) yields

"

uQ; - eQ; + h* [AQ]

2
(), U w0 E ) _
- T+ Q) - Q) }+H.O.T._O (3.22)

Differentiating (3.21) repeatedly with respect to z and substituting into (3.22)

yields
’ " i A53 1
Setting
4
u
A= —— 3.24
72023 (3:24)

results in a sixth order method. Solving (3.19) for the computational stencil coeffi-

clents one obtains

—360hus® — 720* — 60u’h2utht

= 720h2e3
720c* 4+ 60u?h2e? — u*h?
a4y — e”+60une” —u (3.25)
360h2s3
360husd — 720e* — 60u?h’c? + uh?
a3 =

720h%e3

Again, bandwidth of the solution matrix remains unchanged as compared to that
of any two-node finite element basis, while the order of the method increases. This
procedure can be repeated as many times as desired.
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3.2 One-dimensional unsteady case

The unsteady advection-diffusion equation (2.1) written for constant velocity

u(x) = u becomes:

Oq(,t)  Oq(z,t)  0q(,1)

ot o gz (3.26)

One known analytical solution to (3.26) is

q(x,t):e; ll—erf( é(x;t>> l—erf< $<x5t>>] (3.27)

The discrete weak statement formulation written in matrix notation remains

_|_

(2.14). For an arbitrary two-node finite element trial and test function set, evalu-
ating the matrix entries in (2.14) and assembling on two adjacent elements leads to

the following semi-discrete equivalent

a1Qrj1+ aQrj + azQrjr1 + asQj 1 + asQj + agQji1 =0 (3.28)

Here again, the a; are stencil coefficients dependent on a specific choice of finite
element trial and test basis functions in (2.14), @), denotes the time derivative, and
Qj-1,Q;, Q11 are the unknown nodal values of the numerical solution. The time
integration algorithm remains completely arbitrary at this point, to be specified later.

Assuming the spatial discretization to be sufficient, and performing Taylor series
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expansion of (3.28) at node (), yields

2
(a1 4+ az + a3)Q; + h(az — a1)Qu + E(CL?’ + 1) Qran

=W =W
+(CL3 — al) Z FQE )++(CL3 +a1) Z FQ,& )+ (a4+a5 +06)Q

n=3,2 n=4,2

(3.29)

2 e n
+h(as — as)Qs + h—(aa +a4)Qua + (a6 — a1) Y FQ(")

2 !
n=3,2

o0 hn
+(ag +as) Y FQ(n)

n=4,2 "

where () replaces (); for clarity.
In order for (3.29) to approximate the original equation (3.26), the computational

coefficients ay, as, ag must satisfy

a4+a5+a6:0

U
a5 —as =5 (3.30)
2¢e
ag + a4 = —ﬁ

The requirement on coefficients aq, as, az is less restrictive, since the only condition

from (3.29) is

a; + ag +ag = 1 (331)
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The particular choice of the other two parameter combinations, generally results from

the specific finite element trial and test basis functions, leading to a first or second

order of spatial approximation.

In concert with the ideas developed for the steady-state case, we propose placing

the following restrictions on the stencil coefficients

a1 +as+az=1

Clg—GIZCh

as +ap = 2B (332)

a4+a5+a6:0

g — Q4 =

>

2e
a6+a4:—ﬁ—|—2A

Substituting into (3.29) and retaining the terms of the order 1 and h? results in

Qt + U/QZI} - 5Q:L‘m + hQ(Cth + Bthm + Awa
(3.33)

u g
+ 5@ 19 Qaaaa) +
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Following developments of the previous sections, differentiate modified equation
(3.33) with respect to z, and neglecting terms of the order h' resulting from this

differentiation, one obtains

1

which upon substitution reduces (3.33) to

Qt + UQ:L‘ - 6Q$$ + hZ(th (C - %) + BQtww

(3.35)
Qb E )+ HOT. = 0
Trrxr 6 U 12 TTTT . . L
Differentiating (3.33) twice with respect to x yields
€ 1
u u
and thus (3.33) is reduced to
A 1 Ae
(3.37)
e Ae? ¢
+@ (6 + u? 12)) +
and selecting
2
1
A=-2 B=—, (C=-— (3.38)
12¢ 12 12¢

leads to a fourth order spatial discretization.

With the weight parameters at hand, one can substitute them back into (3.32) to
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derive expressions for coefficients a; in (3.28) as

2 + hu 5 2 — hu
ar = Ao —= — Aq =
! 24 276 s 24e
2 2.2 2 2.2
12h2%¢ 6h2e
6hus — 12¢? — h%u?
g —

12h2¢

Comparing (3.38) to the condition (3.17), developed for the steady-state one-
dimensional case, note that the weight coefficient for the spatial derivative group
remains identical, with two additional parameters introduced in the unsteady case
to handle extra terms resulting from the presence of the time derivative in the semi-
discrete finite element computational stencil (3.28). In fact, the approximation of
the spatial derivatives group is absolutely unchanged for the high order formulation
extended to unsteady problems, since the coefficients responsible for spatial discretiza-

tion are identical (compare (3.39) to (3.18)).
3.3 Two-dimensional steady-state case.

In two dimensions, the advection-diffusion equation (1) written for constant ve-
locity u(x) = ui + vj becomes

2 2
Falry) | Paley) | Oe(x,y) | a(w,y)

Ox? 0y? ox oy =0

L(q(z,y)) =
(3.40)

in x,y€(0,1) x (0,1)
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The exact solution of (3.40) on a unit square, comparable to the 1-D problem is

es —1 e —1
q(x,y)=< T >< T ) (3.41)
es — 1 e — 1

To simplify theoretical assessments for establishing methods convergence rate, con-

sider the boundary conditions

q(1,1)=1 q(0,y) = q(2,0) =0 (3.42)
e —1 er —1

q(x, 1) = 1 Q(la y) = 1 (343)
e —1 e —1

that correspond with the exact solution (3.41).

The discrete weak statement formulation remains (3.4), where the element matrix
[A]. is now a function of the element dimensions Az, Ay, and given data. In accor-
dance with the Galerkin bilinear basis two-dimensional weak statement formulation
written on rectangular four-node element, a fully discrete equivalent of (3.4), obtained
by assembling the element matrix on four adjacent elements sharing a common corner

node, leads to the general nine-node computational stencil

Qi1 -1+ Qi1+ c3Qi1j—1 + caQi1j + c5Qi
(3.44)
+c6Qiv1,; + Qi1 jr1 + c8Qijr1 + coQit1 41 =0

Assuming a uniform square mesh with Az = Ay = h, which is sufficiently small,

and writing a Taylor series expansion at node 4,7 yields

9
chn+hQ$(—Cl+03—C4+CG—C7+Cg)

n=1

41



+th(—Cl —Cy —C3+Cr+Cg+ Cg)

h2
+3Qm(cl + 3+ ey + g+ cr + o)

2
+5ny(01 +cg+c3t+crtceg+ Cg)

+h*Quy(c1 — 3 — c7 +¢o) + (c —c)io:ﬁ 2+2 (n)Q
zy\t1 3 7 9 9 1 n or ay

n=3,2

o n (n)
+(co + 1) Z % (3 + 3) Q (3.45)

el NP 9\ ™ © /oM
+(03+C7)Z—<———> Q+(Cg—02)z_<_> Q
n=4,2 P\dz Oy n=3,2 P\ oy

© h 0 (n)
+(c6 + c4) Z ol <%> Q=0

n=4,2
where () replaces @);; for clarity. As with (3.6), (3.45) represents an infinite order

partial differential equation satisfied by the numerical solution.
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In order for (3.45) to approximate the original equation (3.40), the minimum

requirement on the coefficient set ¢; is

chZO

n=1

—C1tc3—cCi+cCg—Cr+cyg=

SIS

v
—01—02—C3+C7+Cg+09:ﬁ

2¢e
C1+C3+C4+06+C7+09:—ﬁ (3.46)

2¢e
Cl+02+03+07+08+09:—ﬁ

01—03—C7+09:0

Indeed, the Galerkin bilinear basis discretization satisfies the required conditions
(3.46), which allows for uniquely defining six of the nine coefficients, while the rest is
determined by the particulars of a given discretization approach. To develop a higher
order approximation, one proceeds in the manner of the one-dimensional case and

replaces (3.46) with

u
—Cl+03—04+06—07+09:ﬁ
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v
—61—62—03+C7+Cg+69:—

h

2¢e
61+03+C4+06+C7+ng—ﬁ+2G

61+02+03+C7+Cg+09:——+2A (347)

61—03—C7+09:B

D
CQ_CIZE
H
Cg—|—01:ﬁ
F
63—C7ZE

This results in nine equations for nine unknown coefficients ¢; and A, B, D, F,G, H
are free parameters to be determined. The procedure is thus identical to the one-
dimensional case. Namely, one includes several free parameters into the stencil coeffi-
cient expressions, by conveniently loading them into the h? order term of the trunca-
tion error expansion (3.45), while retaining the symmetric structure of the modified
partial differential equation.

Substituting (3.47) into (3.45) and keeping the terms of the order 1 and h? yields
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the following expression

U‘QCE + UQy - ngc - 5ny + h2(BQ:vy + GQ:M: + Any

VQyyy _ eQyyyy | UWQuws _ EQuave | DQury | DQuyy (3.48)
+ 6 12 + 6 12 + 2 + 2
(HQuayy  FQuvy | FQuwy o

2 2 2
Differentiating (3.48) twice with respect to x,y and neglecting the terms of the

order h* resulting from differentiating and subsequent substitution into (3.48) yields

uQ:v:v:v + Uchy = 5Q:v:v:v:v + 5Q:v:vyy + H.O.T. (349)

UQyy + VQyyy = €Quayy + €Qyyyy + H.O.T. (3.50)

or

6(waww + QQmmyy + nyyy) = Uwaw + Uway + 'UQwa + Unyy + H.O.T. (351)

Setting
€
H=—— 3.52
’ (3:52)
and substituting back into (3.48) yields
uQm + UQy - ngc - ngy + h'Q(BQxy + Gch + Any
VQyyy | UQaa D_F_ v (3.53)
+ 12 + 12 +me(2 2 12)
D F U
o — + — — — HOT. =0
+@ y(2 3 12))+



Differentiating (3.48) by z,y and neglecting the terms of the order h* leads to

u v
me + nyy = ngy + ngy + H.O.T. (3.55)
Therefore, setting
U—v U+ v
F = D= 3.56
c 5 (3.56)

reduces (3.48) to

uQm + UQy - ngc - ngy

(3.57)
R(Quy(B+ ) 4 Qual G+ ) + QA+ o))+ HOT. =0
i 6e o 12¢ v 12¢ A
Setting
2 2
B=-2 g=-2X 4=-" (3.58)
6e 12¢ 12¢

thus completes development of the fourth order method, with the computational
stencil coefficients determined by substituting (3.52,3.56,3.58) into (3.47) and solving

for ¢;. For u =1 this leads to:

h+¢ 2he + 4% + h? —2e2 4+ h?
Clh = ——— Co = — Cqg = —————
! 6h2 2 6h2s ’ s 12h2¢
2he + 4% + h? 20e? + 3h? —4e% + 2he — h?
4= — P L LN (3.59)
6h2e 6h2e 6h2e
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—2e? + h? —4¢? 4+ 2he — h? h—e¢
Cg = Cq =
12h2e s 6h2e ’ ? 7 6h2

Cr =

It is important to note that the coefficients of the first and second derivatives in
(3.58) (compare to (3.17)) are exactly the same as in one-dimensional case. Exten-
sion of the method to two-dimensional problems thus requires addition of the weight
parameters on the cross-derivatives, which are of course absent in one-dimensional
considerations. This approach therefore provides desirable consistency and continu-
ity when applied to multi-dimensional problems. And indeed, the size of the com-
putational stencil remains equal to that of the second order Galerkin bilinear basis
approximation, hence requiring no additional effort as normally associated with nu-
merical implementation of higher order methods.

Extension to a sixth order accurate method is straightforward and follows the

procedure as outlined. (3.47) is replaced by
9
e
n=1

—C1tc3—cCi+cCg—Cr+cyg=

SIS

v
—61—62—03+C7+Cg+69:ﬁ

2¢e
c1+c3+c4+c6+c7+cg:—ﬁ+2G+2G1h2

2¢e
Cl+CQ+C3+C7+Cg+Cg:—ﬁ+2A+2A1h2 (3.60)
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1 — 3 — 1+ cg = B+ Bh?
69—01:—+D1h

H
Cg+61:ﬁ+H1

F
CB_C?ZE_FFlh

where A, A, B,By,D,D., F,F\,G,Gy,H, H; are now free coefficients to be deter-

mined. Substituting (3.60) into (3.45) and retaining the terms of the order 1,h% h*

leads to
uQm + UQy - ngc - ngy + h'Q(BQxy + Gch + Any

'Unyy 6nyyy uszx ngxxz + Dszy + DQxyy

T T 12 T 12 2 2
+ QQ oo % L+ % ) + DG Quw + A1Qyy + B1Qyy

D /8 9)\° A A

(o) @05 (3t ay) @
H [ (0 0 F (o 0)\°
— (X i (=2 61
+720<8:c+ ) 4<a a) +120<a 8y> @ (36

FE(o o\ . H (o o\ H-B/(d d\*
+6<%—a—y> Q+ﬁo<%_a_y> @t \ar ay) ¢




+F—D+U<3>5Q+F1—D1 <3>3Q_H+e<a>6Q

120 Ay 6 dy 360 \ oy
B—2H,+2A [ 9\" wu—F—D [ 0)\° F,+D, [ 0)\®
24 <a_y> TN <%> ©- z) ¢
H+e[0)\° B—2H,+2C ([ d\"
— il — HOT. =
360 <3x> @++ 24 (827) @) +HO 0

Comparing (3.61) to (3.48) and noticing that h? order term is zero for parameters

A, B, D,G and H satisfying (3.52,3.56,3.58), yields (3.61) in the form

4

h
U‘QCE + UQy - 5Q:v:v - 6ny - %(_720315629031 - 205“mevyy

—10euQzyyyy — 10eVQuzz0y — 206VQ 4ayyy — 360D1£Q 40y — 360D 1Q 4y
—360H16Q zyy + 360F16Q 0y — 360F1£Q1yy + 20UvQyzzy (3.62)
—30uvQyayy + 20UVQygyyy — T20G1£Q 4y — T20A16Qyy — 6VEQyyyyy

+262nyyyyy + 26262:1::1:1:1:1::1: + 1052szxxyy + 1052Qmmyyyy

—6uEQppzns + DV Qyyyy + 5 Quage) + HO.T. =0

Performing differentiation in a manner similar to (3.48-3.58) leads to the following

restrictions on the introduced coefficients

vt _vutviy v || ull o

= 72023 7203 72083 L= 79083

4

Ay
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D1 = —W(—Quzv + U3 - 9UU2 + U3)
F = _TOSQ(_QUUQ +u? + 9uv — v?)
A

1240 40

(3.63)

Again, similarity between one and two-dimensional coefficients is evident, compare

(3.63) to (3.24).

The computational stencil coefficient set ¢; is evaluated by substituting (3.63) into

(3.60) and solving the resulting algebraic system to obtain, for u =1

h? + 15¢* + 6h2%e® + 15he?
g =—
! 90h2e3

4h3 — 120he® — 240e* + 48h2e® — 60h2%c? + h*
Co =
360h2e3

120e* + 48h2%% — 60h2%c% + bt
c3 = —
K 720h23

4h3 — 120he® — 240e* + 485263 — 60h2e2 + b
Cqp =
4 360h23

B 400e* — 32h%e3 + 60h%% — b4
- 120h2e3

Cs

—240e* + 48h%e® — 4h3 4+ 120he® — 60h%c% + h*

%= 3607223

120e* + 48h2%2% — 60h2c2 + b
cr = —
! 720423

20

(3.64)



—240e + 48h?%e® — 4h3 + 120he® — 60h%c% + At
360h2e3

cg —

h? — 15e* — 6h%® + 15he®
90h2e3

Cog —

ol



Chapter 4
Perturbed PDE approach.

4.1 One-dimensional steady-state formulation.

Model equation (2.1) rewritten for the non-linear one-dimensional steady-state

case becomes

Flaa) D ) T8 (4.1)

Assuming the existence of appropriate boundary conditions, the discrete weak

statement formulation remains

WS" = Se([U + Dle{@}e) = Se([A(h, €)]e{Q}e) = {0} (4.2)

A fully discrete equivalent of (4.2), obtained by assembling the element matrix
[A]e on two adjacent elements and presented in a pseudo-finite element stencil form

now is
[i(@1Qj1 + a2Qj + a3Qj41) — €5 (aaQj—1 + a5Q; + a6Qj+1) =0 (4.3)
or
(fion — gjan)Qj1 + (fia2 — £5a5)Q; + (fjas — £506)@j11 = 0 (4.4)

Here a; are the coefficients dependent on a specific choice of finite element trial and
test functions, and ();_i,Q;, @;+1 are the unknown nodal values of the approximate
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solution. A genuine finite element formulation would require interpolation of functions
f(g,z) and £(z), thus adding complexity to the stencil expression in (4.4). Without
the loss in generality, in the present analysis interpolated functional expressions are
replaced with their respective nodal values f; and ¢;.

Assuming a locally uniform mesh with Az = h, which is sufficiently small, and

writing a Taylor series expansion at node j yields

2
fillar + a2 4+ a3)@Q + (ag — a1)hQ, + (a3 + al)%Qmm

n
!

= h
—|—(613 — al) Z ”
n=3,2

n
|

T —sillatasta)Q  (45)

ol
)
_|_
B
_l’_
2
S
It

2

0 h”
+(ag — as)hQy + (ag + a4)%Qx:p + (ag — as) Z HQ(n)

00 R
+(06 —|—CL4) Z F

n=4,2

Q™ =0

where () replaces (Q; for clarity.
Naturally, for (4.5) to approximate equation (4.1), a; in (4.5) must satisfy the

following conditions.

a1+a2+a3:0

asz — ayp = — (46)

>
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a3+a1:O

and

a4+a5+a6:0

ag —as =0 (4.7)
2
az +a; = ﬁ

Coefficient groups [ay, as, az] and [a4, as, ag] are responsible for the second order
discretization of the first and second order derivatives respectively and conditions
(4.6-4.7) must be satisfied independently of a particular approximation technique

selected to arrive at (4.2). Therefore,

0q(z
ggv ) = 01Qj—1 + a2Q; + a3Qj 41
(4.8)
0*q(z
aq(2 ) = a4Qj—1 + a5Q; + a6Qj41
x
and coefficients a; are uniquely determined by solving (4.6) and (4.7)
1 0 1
a1 — ——— Ao = A = —
1 2]7,, 2 ) 3 2%
(4.9)
1 2 1
a4_ﬁ7 a5—_ﬁ, aG—E

Another approach providing higher order accurate solutions at no added compu-
tational cost by retaining the solution matrix bandwidth of the second order methods
is developed below.
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For the computational stencil coefficients a; satisfying (4.9), (4.5) becomes

ijxxx B SjQxxxx
6 12

fiQuw = £jQuz + B ( ) +HO.T.=0 (4.10)

Rewriting (4.10) yields the convenient form

Qo = fQu — I <f Qes - 56212) +HO.T. (4.11)

where f and ¢ replace f; and ¢; respectively.

Equation (4.11) represents an ”infinite” order partial differential equation satisfied
by the nodal numerical solution {@Q} (Warming and Hyett, 1974, Thomas, 1995). We
therefore can differentiate it repeatedly with respect to x , thus expressing higher
order derivatives present in (4.11), and then attempt to derive a second order PDE
(ODE in the one-dimensional steady-state case), whose second order approximation
would result in a higher order approximation of the equation to be solved. Obtaining
this ”perturbed” second order ODE is a key to this theoretical development, since
any second order ODE can be discretized on three nodes in the one-dimensional case.

Assuming for simplicity the viscosity parameter ¢ is constant, differentiating (4.11)

repeatedly with respect to x and neglecting high order terms leads to
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Substituting (4.12) and (4.13) into (4.10) and neglecting the terms of the order

greater than 4, one obtains

ffw f:nw f2 fm .

which represents the equation satisfied by the nodal approximate solution () including
the second order error terms resulting from the selected second order approximation.
Clearly, reversing the sign of the error terms in (4.14) yields the sought ”perturbed”

PDE as

fle Joa 2t
me — EQgz — hZQm <12€ - E) - hZQmm <E - E) — 0 (415)

In applications, viscosity parameter ¢ is usually small, making it possible to neglect
the terms of the order unity as compared to those of the order 1/e, thus reducing

(4.15) to

ffe N
B2t —
Trge = 1M dwayg

fo — &Qzy — h2 0 (416)

and combining the terms, the perturbed ODE becomes

dq ?q hr .0 g\
T o 12l 5s as ) =0 (4.17)

Numerical solution of (4.17) obtained using the approximation consistent with
(4.8-4.9) will provide the fourth order accurate solution to the original equation (4.1)

by eliminating the second order error terms in (4.5).
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Similar arguments yield the following sixth order perturbed ODE;, illustrated for

the linear f(q,z) = u(z) case as

2
uY U u U
UGy — EQxy — h'Zq:v (—I - II) - h2(]:m: <— - _I)

122 12 12 6

’LL’LL2 ’LL3U u U2U uu
N h4 . z z  Yzzzz T TTT 4.18
1 <18052 72053 360 72022 T 1805) (4.18)

2 2 4
4 Uz, Uppr — Ulbpy U Uy U B
Qua

180 90 = 72 @ 36022 720e3

It is important to note that the terms of the order h? remain unchanged from the
fourth order ODE, thus allowing for recursive development of higher order approxi-
mations.

First consider a one-dimensional steady-state case for a constant velocity u(x)=ui

and Dirichlet boundary conditions. Equation (4.1) is

Ligx)) = gdzq;f) - ud‘ilf) —0  in we(0,1) (4.19)
q(0)=0 q(1)=1 on 09 (4.20)

The exact solution in the case u =1 is given by (3.3)
Via the developed methodology, perturbed ODE (4.17) becomes

h?u?

indicating that only the second order derivative perturbation term is required to
achieve a higher order numerical solution in this case.
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The computational stencil expression (4.4) reduces to

w1 Qi1 + a2Q; + a3Qj11) — e(asQj1 + asQ; + aQj41)
(4.22)
h2u?

12¢

(@1 + asQ; + agQjy1) =0

where coefficients a; are given in (4.9). Collecting the terms, the three node stencil is

6heu + 1222 4+ h2u? O+ (122 + h2u? 0
12eh? U Geh? 7
(4.23)
[6heu — 1222 — h2u?
+ 1912 ] Qj+1 =0

With this linear case development now complete one can proceed to the non-linear
Burger’s equation case, f(x,q) = q(z). The one-dimensional steady-state equation is

now of the form

L(q(z)) = 5d2dq$(f) — qdzi(;) =0 in x€(0,1) (4.24)

with boundary conditions

q(0) =1 g(1) = —1 (4.25)

The perturbed ODE form remains (4.17), with f(x,q) replaced by ¢(z). Replac-

ing continuous derivative expressions with their discrete counterparts via (4.8), the

28



computational stencil (4.4) takes the homogeneous form

ho (G ge) e (G S )

PQy [ Qi L @i TR Qi 20 4 Qin (4.26)
12¢ 2h 2h 12¢ h? h? h?

h? Qi—1 Qi Qj—1  2Q; Qi
+Z<_2h+2h e T ) 7Y

The non-linear system of equations (4.26) is solved using Newton’s iterative pro-

cedure, with tridiagonal Jacobian matrix {JAC;_y, JAC;, JAC;1,} evaluated from

(4.26) as
OF;
JAC, = —1 =
00
(4.27)
1
24 B2 (6Q35h + 245 + h2Q]Q] 1= hZQij+1 + 2Q§h2 + 6Qj715h)
OF;
JAC, = —L
J aQ]
1
— 157 (12Qsm12h = 12Qinzh — 965" + WQ7_, - 20°Q;1 Qi (4.28)
+h*Q%,, +8h7Q;Q -1 — 24Q7h* + 8h*Q;Qj41)
OF;
JAC ;4 = —L =
Jj+1 an+1
(4.29)
1

T ——(6Q;eh — 242” + h*Q;Qj—1 — h*Q;Qj41 — 2Q7h* 4 6Q;11h)
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For comparison, presented below are Jacobian matrix elements corresponding to

the second order approximation.

Q; ¢ Q- Q;
JACj 1 = 2_;,_?’ TAC; = 2h, h2 25,

Q; €
JACjn = 5 — =5 (430)

4.2 Non-uniform mesh implementation.

Theoretical analysis of the above sections assumes a uniform discretization of the
solution domain, thus imposing a rather serious restriction on the method’s practical
applicability. Herein, the theory is naturally extended to incorporate a non-uniform
mesh implementation. This development is shown to be greatly simplified by the
method’s design goal of solution matrix bandwidth containment. Combination of a
uniform and non-uniform discretizations leads to the idea of a locally uniform mesh
which is more suited for "real life” problems.

One-dimensional model equation remains (4.1). Non-uniform discretization of
the solution domain is introduced via geometric progression expression of the form

(Baker, 1991)

where h; is the discretization size, and p is geometric progression ratio. Discretization

nodal coordinates are determined via (Baker, 1991)
Lpi—l

XRiy1 = XRy + ——
Z] lp] !

(4.32)
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Here X R is the nodal coordinate, L is one-dimensional length measure of the solution
domain, and M + 1 is the total number of discretization nodes.

Taylor series expansion at node j yields

2
Fl(n + a2+ 0)@ + (asp — a)hQs + (asp” +m) Qs

+ Z —,Q(n)(a?,pn —ap) + 24:2 HQ(")(agp” + ay)] (4.33)
n=3,2 n=

hZ
—¢jl(as + a5 + ag)Q + (asp — as) hQy + (agp® + a4)EQM+

(0] n (0] hn
> Q" —a) + Y Qa4 a)] =0
n=32 n=4,2

The approximation requirement (4.6-4.7) is modified to

a; +ax +as = 0
asp —a; = — (4.34)

a3p2 +a; =0
and

a4+a5+a6:0

agp — ay = 0 (4.35)
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9 2
asp +a = —

2
uniquely providing coefficients a; as
P p—1 1
a9 =——-, Qg=——, a3=——"—,
on(+p)” T ph P ph(1+p)
(4.36)
2 2 2
7

=, as = ———, Qg — ———
RP(1+p) 7 ph? C T ph?(1+p)
Substituting into (4.33) and neglecting terms of the order greater than h? yields

Taylor series expansion in the form

fph?

e(p—1) Iph®
6

h

The lowest order truncation error term appearance indicates that any three-node dis-
cretization on a non-uniform mesh can at best achieve a first order approximation
of the original equation. In fact, unlike the uniform mesh case, where discretization
symmetry allows for elimination of the odd order error terms (4.5), here one must
deal with both odd and even order error terms in order to design higher order ap-
proximations. The only potential drawback resulting from switching to more realistic
non-uniform approximations is therefore the increased amount of algebraic calculation
required in evaluating correction terms providing higher order approximation. This
is a minor inconvenience, easily offset by taking advantage of any symbolic manipu-
lation language (e.g. MAPLE or MATLAB). Otherwise, all theoretical developments

of the previous sections remain valid on a non-uniform discretization.
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Hence, proceeding along the basic steps outlined before one rewrites (4.37) in the

form
1

and differentiating (4.38) by z obtains the following expression

Que = (/@ + fQr2) (1.39)

Substituting (4.39) into (4.37) yields the second order perturbed ODE in the form

M(f:vqx + fqgcx) =0 (440)

qu_5Qxx+ 3

which nicely reduces to the original ODE (4.1) on a uniform mesh (p = 1).
The design of the third order method follows the well known route. Rewriting

(4.40) as

(f + Wfo 4z + <Wf - 6) Qzz =0 (4.41)

one can now substitute partial derivative expressions from (4.8) and writing Taylor

series at node j obtain

<f+@fx> Qo + Z (@ —a)+ S %
: n=4,2

n32

(asp™ + a1)

(4.42)

=0

—<Mf—5> Qmm+z aﬁp — ay) —1—2%%1)”—1—@4)

n= 32 : n=4,2

63



Remembering (4.36) and retaining the terms of the order h? results in

<f+ (p—gl)hf> [Qw ph?]

+%Qmw] L HOT. =0

Provided one began this process with the second order perturbed ODE (4.40) as
the starting point, one can immediately simplify the task at hand by noting that first

order terms in (4.43) must cancel out reducing it to

2h? —p+1
fQ:v - ngc + pTQmmc - (p 12)2 ) chmc
(4.44)
_ 21,2

Lowering the order of this equation from fourth to second, which is a focal point
in developing third order approximation, now requires evaluating fourth and third
order derivatives via their lower order counterparts. Differentiating (4.38) twice with

respect to x

1
and recalling (4.39) one obtains (4.44) in the form
P’ —p+1)h —p+1)h

(4.46)

N (P*+p+1)h*f

36e (feQuz + [Qua) + HO.T. =0
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Collecting the terms and reversing signs on the correction error entries yields the

third order perturbed PDE as

P —p+ DR fee (P +p+ 1)h2ffx:|

fqgc — EQzg + Az |: 12 362

(4.47)

P —p+ DR fe (P +p+ DR f? 0
6 36¢e

o]
Similarly to the uniform mesh development, order of magnitude and vector analyses

reduce (4.47) to

dq 0*q¢ h(P*+p+1),0 dq
et _ — (=) =0 4.48

fax 88:62 36e fax fax (4.48)
Again for p = 1 this equation reduces to the fourth order approximation (4.17),

ensuring compatibility of the approach developed herein.
4.3 Two-dimensional steady-state case.

Model equation (1) rewritten for the two-dimensional steady-state case, written
for velocity u(x,y) = u(z, y)i+ v(z, y)j becomes

q(x,y) N 9%q(x,y)

. dq(z,y)
ox? oy?

—U(l‘,y) o —U(l',y)

L(q(z,y)) = ¢

in z,y € (0,1) x (0,1)
In accordance with the Galerkin bilinear basis two-dimensional weak statement
formulation written on rectangular four-node element, a fully discrete equivalent of
(4.49), obtained by assembling the element matrix on four adjacent elements sharing
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a common corner node, leads to the general nine-node computational stencil

C1Qi—1,j—1 + 2Qij—1 + c3Qiy1,-1 + caQi—1; + c5Qi 5
(4.50)

+c6Qiv1,j + crQi1,j41 + 8Qijr1 + 9Qit141 =0
As shown in the previous chapter, assuming a uniform square mesh with Ax =
Ay = h, which is sufficiently small, and writing a Taylor series expansion at node i,j
yields (3.45) with @ replacing @, ; for clarity. Equation (3.45) represents an infinite
order partial differential equation satisfied by the numerical solution. Retaining only

the terms of the order lower or equal than four yields

(1 +ea+tes+eg+ces+cg+cr+cg+c9)Q
+hQ.(—c1 + 3 — ¢y + 6 — ¢7 + ¢y)

+th(—Cl — Cy — C3 + Cr + Cg + Cg)

h2
+EQZM(01 + C3 + Cy + Cg + Cr + Cg)

2
+5ny(01 + Co + C3 + Cr + Cg + Cg)

3
+h?Quy(c1 — 3 — €1 + co) + +EQmmm(Cg —c1+c3—cr+cg— ¢y) (4.51)

3 3
+Enyy(09 —c—cgtertog—c)+ 7me(09 —c —c3+cr)
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h3 h*
+5Qxyy(09 — C1 + C3 — 07) + ﬂQmmmm(CQ + (4] + C3 + Cr + Cg + 64)

4 4
+ﬂnyyy(CQ + ¢ +c¢3+c¢r+cg+ 02) + EQmmmy(CQ +c —c3 — 07)

h* h*
+Emeyy(09 +c—c3—c7)+ Zmey(CE; +e+e3+e)+HOT. =0

As shown in Chapter 3, the necessary symmetrization of the selected discretization

is achieved via

—C1+C3—C+C—Cr+cCcg=

SIS

v
—61—62—03+C7+Cg+69:ﬁ

2¢e
Cl+03+C4+06+C7+09:—ﬁ

2¢e
Cl+62+c3+c7+08+69:_ﬁ (452)

01—03—C7+09:0

U+ v
Cg — C1 — 6h,
Cg—i_Cl:W
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u—"v

6h

C3 — Cr =

which reduces (4.51) to

UQ UQZ'Z'Z' UQCECE U‘QCE
UQy + vQy — £Qur — £Qyy + h*( g”+- ot (3y+ 6”)
(4.53)

o h2 yyyy vy
(5 T2 T

In concert with the theoretical developments of the previous chapters one can now

)+ HO.T. =0

differentiate (4.53) twice with respect to x and y and neglecting higher order terms

obtain

uwaw + 2uiL‘Q£L‘:L‘ + quww + 'U:L‘mQy + QUZL‘QI]J + 'Uway = 5Qm:1::1::1: + SQ:L‘:I:yy (454)

UyyQz + 2UyQuy + UQuyy + VyyQy + 20y Qyy + VQyyy = EQuayy + EQyyyy (4.55)

Similarly, differentiating (4.53) with respect to 2 and y produces

u:va + U‘QCECE + Uny + UQ:):y = ngmc + ngyy (456)

qux + ume + UyQy + Uny = 5Q:my + 5nyy (457)

Substituting expressions (4.54-4.57) into (4.53) leads to

VU Q. VUQyy 0, Qy  VPQy,
12¢ + 6e + 12¢ + 12¢

U‘QCE + UQy - 5Q:v:v - ngy + h2 <

uu:vQ:v UZQ:MJ uva umem uxQz’x
hZ y _ 4.58
+ ( 12¢ + 12¢ + 12¢ 12 6 ( )

1 B2 (_U:v:vQy VoQay  UyyQaz  UyQay _ Uy Qy _ Uyny) -0
12 6 12 6 12 6
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which after reversing the sign on the correction error terms yields the modified fourth

order perturbed PDE in the form

2
UQw + 'UQy - 5wa - Sny — h? (Uqux + UuQ:py + UUyQy + ! ny)

12¢ 5 12¢ 12¢
UpQr  WQur | u:Qy  UpeQr  UrQuy
< 2= " 12: T 1e: 12 6 (4:59)

2 <_U$$Qy _ U Quy _ Uyy Qs _ Uy Quy _ UyyQy _ Uyny) —0
12 6 12 6 12 6

Again, note that for most applications the 1/e terms dominate the solution be-
havior. Hence, neglecting high order correction terms of the order of 1, the remaining
terms can be combined for perturbed PDE (4.59) to be conveniently recast in con-

tinuum vector-form

2

h
u-Vq—sV-Vq—l—%u-V(u-Vq):O (4.60)

As before, its discretization (consistent with (4.52)) will yield a fourth order
method due to the developed cancellation of the correction error terms. The partial
derivatives of the order h* present in (4.59) can be discretized via any conventional
FD/FV/FE method, since the error terms in their respective approximate expressions

on a uniform mesh will be of the order h*. The following are used in this development

1 1
Q= _ﬁQi—l,j + ﬁQi-}—l,j (4.61)

1 1
Qy = —ﬁQi,jq + ﬁQi,jJrl (4.62)
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1 1 1 1
Qay = WQi—l,j—l - in-ﬁ—l,j—l - m@i—l,jﬂ + 4h2 Qiv1jt1 (4.63)
1 2 1
Que = ﬁQi—l,j - ﬁQi,j + ﬁQHl,j (4.64)
1 2 1
Quy = 35@ig-1 — 13Qi5 + 3@ (4.65)

Indeed, all approximations satisfy the matrix bandwidth restriction requirement
and some maybe easily recognized as their one-dimensional counterparts. While the
approximation selection in (4.61-4.65) does not compromise the fourth order accuracy
of the method, the algorithm performance can be further optimized by customizing

these discrete expressions.

4.4 2D steady-state verification problems

The first problem under consideration is a linear advection-diffusion equation with

constant coefficients u = v = const. The modified PDE (4.60) reduces to

(4.66)

2 2
uQx + UQy - 6Q:m: - 6ny - h2 <UUme + Y ny + 4 wa) =0

be 12¢ 12¢
and using discrete approximations in (4.52), (4.61-4.65) one obtains the coefficients
in the nine-node stencil in the form

2ehu + 2ehv + 4% + uvh? 82 + dehv + v?h?

“a= 24h2e 27 12h%
2¢hu — 2ehv — 422 + uvh? 82 + 4dehu + u?h?
c3 = cy = —
5 24h2e ’ 4 12h2¢
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202 4+ v2h? + u?h? 822 — dehu + u*h?
Cr = Cp — —
o 6h2e ’ 6 12h2e

(4.67)

2¢hu — 2ehv + 42 — uvh?
24h2e ’

8c2 — dehv + v2h?
12h2%¢

Cr = cg =

2ehu + 2ehv — 4% — uvh?
Co —
) 24h2e

It is important to note that the stencil coefficients in (4.67) are not the same as
those obtained for the same equation using the undetermined coefficients method of
the previous section. This proves that these two theoretical approaches for implement-
ing high order methods are indeed different and their respective future development
can proceed in distinct directions.

Selecting u(z,y) = v(x,y) = %q(x,y) in (4.49) provides the non-linear verifica-

tion case in the form

1 dq 1 Oq d%q 9°q

Sl e P L 4.
\/ﬁqax+\/§q3y o 58y2 0 (4.68)

The modified PDE (4.60) in this case becomes

Blor T Ry o " oy

1 0q 2 1 dq 2 1 ,0%
h 24: 1 (8y> * 21c ! <3x> - 24: 1 0y? (4.69)

L gy 1 g
241 912 442 0x 02?2 44/2 0y 0y?

12: 10 oy 127 0x0y

1 0Og 1 Og 0%q 82q_h2<1 dq Oq 1 282(])

)
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_h;(_;@@_ L g0 1 0g 0% 1 @an)_
12120220y  12/20y20x 6202020y 620y 0xdy )

Discretizing (4.69) via (4.52), (4.61-4.65) one can calculate the Newton algorithm

jacobian expressions for the fourth order method as

oF
————— = — (8cahQ;; + 8* + Q?th +aheQi1
0Qi—1,j—1 ’

(4.70)

— athiH,j + aheQi,j_l — ah6Qi,j+1)/48h26

OF = — (322 - K20, 0. 1 - — h20: :Q..1 : + h20: -0, .
- ( e” + Qz,]szl,] Qz,]QHl,] + Qz,]Qz,]fl
0Qij1
— 12Qu; Qi1 + 2Q7 0% + 12aheQij 1 + daheQ; 1 (4.71)
+ aheQi1j-1 — aheQiprj-1 — aheQi 111 + aheQiq1 j41) /48R
oF
P — :(862 + Q?th + CthQz',l,j — aheQi+1,j
8Q1+1,]—1 ’
(4.72)
+ athi,j_l - ah6Qi,j+1)/48h2€
OF 2 2 2 2
=— (326" + h°Q; Qi1 — M QijQijr1 +h Qi Qi1
0Qi 1,

— h*QijQiv1; + 2Q7 ;b + 12aheQ_y j + 4aheQ; i

(4.73)

+aheQi 11— aheQiy1j 1 — aheQi 1541

+ athi+17j+1)/48h2€
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oF
0Qi;

= (48Q7 ;h? — 16ahe Qi1 j—1 + 16aheQiy1 ;1 + 320
—8h*Q; jQi 1 — 8h*Qi jQiv1j — 8h*Qi Qi 1 — 8h*Qi Qi

_h22

—h2 2 i+1,j + 2h2Qi,j—1Qi,j+1 - h2Q?,j,1 — h? l?,j+1 (474)

i1,
+4P*Q; jQit1,j—1 + 4D Q5 jQi1 i1 — A7 Qi j Qi1 j+1 — 2R Qi1 Qi j—1

+20°Qi-1,;Qiji1 + 20° Qi1 Qi1 — 2107 Qis1 Qi1

+2h2Qi1,;Qir1; — 4h°Q; ;Qi—1.5-1)/96h%

oF
aQ ] = - (3252 - h2Qi,jQi,j*1 + hZQiJ‘Qz‘,j+1 — hZQi,jQifl,j
i+1,5
+ h’Q; jQisrj + 2Q7 ;b7 — 120heQiy j — 4aheQi (4.75)
— aheQ;1j—1 + aheQiy1j—1 + aheQ;i_1 j+1 — aheQiyy j11)/48h%e
oF
0Qi—1,j+1 =(=8" + Q?:jh2 + aheQi—1; — aheQit
| (4.76)
+ CthQi,j,1 — athi7j+1)/48h25
oF
00, =— (322" - h2Qi,jQi—1,j + h2Qi,jQi+1,j — hZQi,jQi,j—l
3,j+1
+ h2Qz’,jQi,j+1 + QQ?,th — 12aheQ; j+1 — 4aheQit1 (4.77)

— athi,Lj,l + ClhEQiJrl,j,l + ah&“Qi,LjJrl — ah&Qi+17j+1)/48h26
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oF

m =(8ahQ; ; — ]e? — ?’jh? —aheQi—1; + aheQitij
i+1,j

—aheQ; ;1 + athi,j+1)/48h25

4.5 Unsteady two-dimensional formulation.

The unsteady advection-diffusion equation (1) in two dimensions is

dq(z,y,t) 582Q(x,y,t) 9?q(z,y,t)

Bt D2 T oy

dq(z,y,t)
ox

dq(z,y,1)

dy =0

+u(z,y,1) +v(w,y,t)

(4.78)

(4.79)

Following the theoretical development of Lax and Wendroff (1960) outlined in

detail by Chaffin (1997), two forward Taylor series, for a full timestep At and for a

partial timestep (1 — a)At

o"  At20*q0 APt At ¢
ntl— g 4 At H.O.T.
q Tt e T o T o1 o

og" (1 —a)?’At?20%¢" (1 —a)’AL? 33"

n+l-a _ n 1— At
1 e I oz 6 ot
(1 —a)tAt* o'q"
HO.T.
T e T
and two corresponding backward series
o n+1 AtQ 32 n+1 At?’ 83 n+1 At4 34 n+1
" =q" - At a + d — a + a + H.O.T.

ot 2 ot? 6 O3 24 Ot*

qn—a _ qn+1 B aAtaqn N a2At2 82qn+1 B Oz3At3 a3qn+1
ot 2 ot? 6 ot?

a4At4 a4qn+1

oo THOT.
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(4.81)
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are used in designing the temporal discretization.
A linear combination of the four series is then taken to eliminate third order terms

as

aanrl

ot

=" — At |6 +(1+9)88it] =

(4.84)

AtZ B annH ann
- _(39— UW + (30 — 2) = ]

At4 B a4qn+1 a4qn
I _ 1 2 o 2 2
_ (30— 1)* =+ (30 — 2)°—

72

] +HO.T.

Here, the left had side is the 8-implicit approximation, and the right hand side consists
of the correction error terms. Selecting the non-dissipative, second-order accurate
trapesoidal rule # = 1/2 for time integration and replacing the corresponding time
derivatives with their space counterparts via the Lax-Wendroff substitution utilizing

the original equation (4.79) as
2 2
% = (—u2 - vﬂ + 58— + 58—> q (4.85)

yields the following semi-discrete equation

Qn+1 N g (u 8Qn+1 UaQn-H aQQn-i—l aQQn-i—l) _

2 ox + oy B Y R

(4.86)
Qn

B g( aQn aQn 82Qn 82Qn>

2 "oz +Uay _681‘2 _681‘2

Introduction of the nine-node spatial discretization (4.50) leads to
n+1 At n+1 n+1 n+1 n+1 n+1
Qi + 5 (@1 + QT + @i + @it + 6

75



1 1 1 1
+CGQ?‘:_1,]‘ + C7Q?j1,j+l + CSQZ;FH + C9Q?J:r1,j+1) = (4.87)

At

Q= S (@@ 1 + Qi + esQir o + Qi + @

+eeQitr; +erQiiy i1 + 8@y + C9Q?+1,j+1)

with a subsequent Taylor series expansion, whose existence is postulated via the usual

assumptions, producing

At
Q" + 7((01 +ep et eates et er+eg+ )M

+hQZ+1(—Cl + C3 — Cy4 + Ceg — Cy + Cg)

+hQZ+1(—cl — ¢y — 3+ 7 + g+ )

2

h
+3 "Hley + s+ ey + o+ e+ o)

h2
+5QZ;—1(01 + Co + C3 + Cr + Cg + Cg) + hQQZJI(Cl —C3 — Cr + Cg)
h3
+€QZ;&1(C9 —c1+c3—cr+c—cy)

h3
+EQZ?LI(CQ —C1 — C3 + Cr + cg — 02)

3 3

h h
+3 Z;ryl(% —c1—c3+cr)+ o5 Z;“yl(Cg; —c1+c3—cr)
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4

4

6

h4
+QQZ;;QU(C9 +e+ester et c)

4

h h
o7 @ (€0 €1+ e er o es + ) + Qi (co t e — e cr)

6 vrTTy

4

h
+= ;;yZ(CQ t+a—C— 07) + ;L;yly(c9 +c+e3+ C?)) =

4

At

Qn—7((01+C2+C3+C4+C5+C6+07+08+09)Q”

hZ

+h@Qy(—c1 + 3 — ¢y +cg — 7 + )

‘HLQZ(—Cl —cy—c3+cr+ g+ o)

h2
+§ng(cl +e3+ eyt g+ or+ o)

+_Q2y(cl + e+ eyt er gt co) + h2Q2y(Cl —C3—C7 + ¢9)

2

3

+EQZ$$(C9 —c+cec3—Cr+cg— C4)

3

+EQZ?}Z/(09 —C1 — C3 + Cr + Ccg — 62)

3 h3

+?Q2$y(69 —c —c3ter) + EQZyy(CQ —c+e3—cp)

h4
+ﬂQZ$$$(09 +c+e3tcer+ce+ 04)

7

(4.88)



h* h*
+ﬂQZyyy(C9 + C1 + C3 + Cr + Cg + 02) + Qﬂmy(CQ + Ci —C3 — 67)

h4
+ chyyy(cf’ +oa—c—or)+ mey(CQ +c1 4¢3+ ¢7))

Introduction of symmetrized spatial approximation of the form (4.52) further
yields

Ate 4 Dte 4

Ntu NAtv
n+1 n+1 n+l _

Atu Atv Ats n  ADte

2 6 6 6 6 ’
UQZyy Qs n gwy quyy)
6 6 6 6
_hZAtS (Q;;a}x i QZ;;JIZJ 4 Qgi;y n zrae 4 yyyy 4 gﬂvyy)
2 12 12 6 12 12 6

Differentiating (4.89) twice with respect to z and y and combining the terms

produces
Atu, QY "H UQmm ma Z;l — Qe — Qyy
+— nyy At Zyy + AtqunH + Ot n+1 + %u Z;;l
P2l 4 @y + S + 2l + A,
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A At At

At
UCECEQ + Atvamy + Qa::vy unyTCEL-'_I + TUQTZLJZ}

2
+A2 U@ 4 Ao, @t + 21 QZ;;JI At“nyg Ot Qay
50 Q) + A, = AreQu, + 5@ + S0,
+AteQ)y,,, + % yyyy % Z?E/

Similarly, differentiating with respect to x and y yields

g n+1 gv Qn+1 g

n+1
u
2 T

ry

At
Qrt + 7%@2“ +

At At At At

Ate . Ote . Ate Ate
T W+ 5 Qo e 5y

and

At At
QZ-I—I 4 7ung;z—i—l Qn—l—l Usz—l—l Qn-l—l

A AN A A
_Qy + TUsz + TUwa + T'UyQy + TUny =

Nte Nte Nte

—|—1 +1
QZwy 2 xxy + —QZyy + —nyy

respectively.

(4.90)

(4.91)

(4.92)

Substituting (4.90-4.92) into (4.89) to eliminate higher order derivatives from the

fourth order error contribution, combining the terms and reversing the signs on the er-

ror entries of the modified PDE one obtains the fourth order space accurate perturbed
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PDE in the form

O+ AtuQn+1 N AthnH B
2 7 2

h2 A\t ntl u Ully  Ugg Uy Ul
% A T 2 12 1

12 12 12 6Ate * 12¢

_h2Ath+1 <uvx Vo vyy+ v %>
Yy

RPAE o fuv oy, g
Do (22 Y T 4.93
2 7% (66 6 6 ) (4.93)
n Otu o Atv o Ate - Ate

_|_

oAt T12e 12 12 1o

h2Ath < u Uy s Uy vuy>
2 T

+h2AtQZ (uvm Ugw Uy v —l—%)

2 122 12 12 6Ate ' 12¢

+h2At L v N 1w +h2At L[ u? N 1 u,
2 W12  6At 6 2 A\12e  6At 6

VAN, (uv Uy Ux>
2 i
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Finally, performing order of magnitude analysis consistent with the steady-state case

and proceeding to the limit as At — v > 0 yields the continuum form

dq h?
a+u-Vq—6V-Vq—l—26u-V(u-Vq)
(4.94)
h? h?

Note that (4.94) recovers the steady-state modified PDE form (4.60), when tem-
poral error terms are taken into account. The theory is therefore complete. The
symmetry of the developed discretization in (4.52) would provide a natural extension
to three-dimensional problems, with the continuum perturbed equation forms (4.60)
and (4.94) remaining unchanged from the two-dimensional case, granted the mesh

size measure h is evaluated as an appropriate combination of Az, Ay and Az.
4.6. High order formulation for hyperbolic problems.

The advection-diffusion equation (1) written for zero physical diffusion is written

as

dq(z,y,t)
ot

dq(x,y,t)

0 t
+tu(z, g, t) 2 o q(z,y,t)

= 4.
5 0 (4.95)

+v(w,y,1)

Introducing the temporal discretization in the manner illustrated in (4.80-4.84),

selecting trapesoidal integration rule and substituting the corresponding time error
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terms via (4.95) yields

At aQnJrl GQ”“
n+1 — —
Q" + 5 <u o + v o >

Qn

At < o aQ”) (4.96)

> \"ar 77 dy
The nine-node spatial discretization (4.50) is then introduced to produce (4.51),

with the symmetrized spatial approximation requirement (4.52) now being replaced

by

—C1+C3 —C4+Cg— C7+ Cg =

SIS

—C1 — Cy —C3+C7+Cg+ Cg =

SIS

Cl+03+04+06+07+09:0

ci+cy+e3tert+cgt+cg=0 (4.97)

61—63—C7+69:0

U+ v
Cg — C1 = 6h
Cg+01:0
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u—"v

6h

C3 — Cr =

Substituting (4.97) into (4.51) and neglecting error terms of the order greater than

four yields

Ntu Atv Ntu Atv
Q" + TQZH + TQZH - Q"+ 5 Qy + 5 Qy

hQAt

1 1 1 1
5 (v Q) + uQhty +vQut ! +uQnt

+vQyy, + UQn., +vQ%,, +u@y, ) =0

Differentiating twice with respect to x and y one obtains

At A
Qn+1 + 7 :v:in+1 + Atqun-H + —= :v:in+1 + Atvan-H
At At At
+ TUQZ;; + = wan + Atuw@ UmwQZ + Atvagy
A t
and
At At At
n+1 n+1 n+1 n+1 n+1
+ + _Uny T Atu,Q + + 7“ w;ry + ) nyy+
At n+1 At n At n
+ ?JQ unyx + quxy + Q:vyy
At n n+1
+ Uny + Aty Qy, = Unyy — v y;;
respectively.

(4.98)

(4.99)

(4.100)

Substituting (4.99,4.100) into (4.98), collecting the terms and reversing the signs

on the error contributions results in the modified fourth order space accurate PDE in
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the form

Atu Atv h2 At 1 U
n+1 n+l , —/"~ n+1 n+l x
@ Bl gy Bl Q(%ﬁ)

) h2Ath+1 (@ N M)

h At net 1 Vy
5 @ <3At + 3 6 6
h2At 41 (Vzz Uy h2At 41 (Vz Uy
n — n —+ =) = 4.101
Tt 2 Q ( 6 + 6 ) 9w (3 + 3) ( )

o ANtu o Ntv o BEAE 1 Uy

VAN 1 Uy REAE ) (Ugr Uy
2 <3At 3>_ (_Jr?)

h2Ath (vm @) n

Order of magnitude ordering combined with taking At — ~ > 0 results in

dq h?
— - = 4.102
5 +u-Vyqg 3Atv Vg=0 (4.102)

which conveniently adds an artificial diffusion operator to the original equation, whose

application is balanced by the respective measures of temporal and spatial discretiza-

tions.
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Chapter 5
Lax-Wendroff, upwind formulations. Monotonicity
Vs. accuracy.

5.1 Perturbed PDE analysis error correction.

The high order spatial multidimensional formulation developed herein has been
shown to eliminate oscillatory dispersive error modes thus promoting solution mono-
tonicity and accuracy on a sufficiently refined computational grid. The developed
perturbed PDE methodology also allows for qualitative analysis of the error control
mechanism by clearly specifying the error terms corrected to the higher order of ac-
curacy. In the one-dimensional steady-state case the perturbed PDE is shown to

be

dq 9%¢ h* 0 0q

on uniform, and

dq ¢ P@P*+p+1) 0 9dq¢

Uo "o T Up Us = 0 (5.2)
non-uniform discretizations.
The uniform-mesh perturbed PDE (5.1) reduces to
UGy — £y — fﬁqmu—2 =0 (5.3)

12¢

in the linear case.
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Similarly, in two dimensions the perturbed PDE is

2

h
u-Vq—sV-Vq—l—qu-V(u-Vq):O (5.4)

with the linear case resulting in

vu@) v?Q u?Q
T - rxr — _h2 2y —h2 v _h27m :0 55
uQy +v0Qy — Q) EQyy 6 12¢ 12¢ (5:5)

The high order spatial error correction in both cases is therefore achieved via inrto-
duction of the diffusive terms loaded by the coefficient appropriate for the desired or-
der of accuracy. The cross order derivative term is introduced in the two-dimensional
case (5.4), consistently emphasizing its multidimensional origin. Establishing the na-
ture of the high order correction additions gives one an opportunity to compare this
present, approach to several other methods similarly utilizing space-time correction

(mostly diffusive) terms in an attempt to enhance solution accuracy and monotonicity.
5.2 Lax-Wendroff formulation for the linear unsteady case.

Consider the one-dimensional unsteady linear advection-diffusion equation:

_0q 0 0%q

=0 (5.6)

Lax-Wendroff Taylor formulation is specifically designed to develop high order
time discretization. Two forward Taylor series, for a full timestep At and for a
partial timestep (1 — o)At and two corresponding backward series are used towards

this goal as shown in Chapter 4.
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A linear combination of the four series is then taken to eliminate the third order

terms yielding

aanrl aqn
n+l __ n i
q " — At |0 5 +(1+90) 5
AtZ r annH ann
_ )= — 5.7
o 60— DT+ 0= W] (5.7
A 4T 4 n+1 4 n
—7—; —(39—1)23;’t4 +(39—2)2aaf4 ] + HO.T.

where 6 = (« +1)/3.

The left had side is the #-implicit approximation, and the right hand side consists
of the correction error terms. A standard procedure is now to replace time derivatives
with their space counterparts via the Lax-Wendroff substitution utilizing the original

equation (5.6) as

91 _ <_u3 N 63_2) ’ (5.8)

d%q 9] 0? 9] 0? 5 o 5, 0%\ 9%
"o (cu e ) [(~u— e g = (W2 = 2ue— + 22— ) =L (5.
e ( u8x+68x2> ( u x—|—6 )q <u usax+s 8x2) 52 (5.9)

Clearly, a non-linear case would add some extra algebraic complexity in evaluating

these terms.
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Finally, substituting (5.8-5.9) into (5.7) yields the following semi-discrete PDE

aqn—i—l a2qn+1
n+l _ n A o
q q t9<uax +e 8x2>
Y NTCR Y L i
“ ox c 0x?
(5.10)
AtZ(SH _ 1) 282q”+1 a3qn+1 284qn+1
* 6 <u 2 2ue o0z3 e ozt >
At2(30 —2) [ 0% gm0
_9 =
+ 5 <u 922 UE 53 +e€ 8x4> 0

The time discretization technique described herein provides a potentially infinitely
accurate approximation in time achievable by correcting for progressively higher order
truncation error terms. Including only At order terms in (5.10) would produce the
second order time accurate method, while retaining terms of the order At? would
increase the corresponding order of accuracy to four. This procedure can be continued
to the desired approximation degree. Of course, as usual, accuracy would come
at a price. As can be seen from (5.10), fourth order time accurate method would
require one to discretize third and fourth order space derivatives, thus increasing
computational costs by expanding the solution matrix bandwidth.

The order of the spatial discretization would also become an issue in this case,
since a low (lower than four) order space approximation will offset the advantage
of using high order accurate time method by introducing low order errors into the

numerical solution. Therefore tradeoffs persist, the most common being the use of
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the substitutions (5.8-5.9) derived for a strictly hyperbolic (zero physical diffusion)
problem in a more general case (5.6) while arguing that the focus is on the problems
with zero or small physical diffusion. Sometimes it is simply stated that retaining
third and fourth order derivative approximations produces an undesirable increase in

solution matrix bandwidth and all derivations proceed from there with (5.10) reduced

to

aqn-i—l a2qn+1 aqn 62qn
L _ g At — —NAt(1-0) | —u—
1 1 < T or e Ox? ) ( )< " ow +68x2>
(5.11)
At?(30 — 1) ,d*¢" T A3(30 —2) ,0%¢"
+ 6 4 + 6 o T 0

or taking At — v >0
dq dq 0%q  Atu® 0%q
el 1 — = 12
ot T or o 2 om0 (5.12)

The correction term resulting from this analysis is a diffusive second order derivative
of magnitude Atu?/2 which is notably independent of the viscosity parameter & and

is immediately recognized as the TWS formulation /3 correction term.
5.3. Generalized Taylor Weak Statement approach.

For the purposes of the theoretical analysis, the general multi-dimensional advection-
diffusion equation is assumed to be sufficiently approximated by its convectional com-
ponent (Chaffin, 1997). In index notation

dq dq
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The higher order time derivatives are replaced by the equivalent spatial derivatives

as outlined in the previous section in the case of the linear equation resulting in

0%q 0 Oq 0 dq

O L (PP 14

o~ Yoz, 0t "ou, <“3 axj> (5.14)
g _ 0 ( 00¢\_ 0 ( 9 ( 0q (5.15)
ot~ oz, \ Yox;ot) ow \ "oxm \ Yoz ‘

Weighted combinations of (5.14) and (5.15) are taken with weight coefficients

—a+ B ~1andv— pu=1 yielding

0%q 0 Oq 0 dq
94 _ 90 (0,220 198 (up=-2- (0, 2L 1
or ¢ (“Jaxj 8t> +20 (“’“axk <“Jaxj>) (5.16)

D3q o) 0 0q 0 o) dq
bl Y PP il R P 1
o~ O (“’“ Dy <“J a1 8t>) + 6u (“l oz, <“’“ Dy (“ﬂ axj)» (5.17)

Substituting these forms in the series time Taylor series expansion and proceeding to
take At — v > 0 yields the modified system

0 0 n+0
9., 90"
8xj

ot
0 0q 0 d0q

0 0 0q 0 0 0q
A2 _— - 71 — _— 1 —
At (fy <uk o (u] z t>> +u<ul o (uk o <u] x]>>>) 0

specification of the coefficient set «, 3, v, 4 is usually a subject of numerical trial-and-

error approach with larger amounts of diffusion achieved by increasing coefficient 3
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where required by trial solution runs. Possible optimization approaches were also
suggested by Chaffin (1997).

As seen from (5.1) and (5.4), the high order correction error term obtained in the
present development is identical in appearance to the modified TWS g term. The
expected high order spatial accuracy of the TWS method is therefore theoretically
verified. Another important consequence of the present analysis is that application
of the correction term is now governed by the theoretically sound principles rather
than numerical experimentation. The theory therefore provides a highly efficient
dispersion error control mechanism whose application is based on the specifics of the
solution domain discretization and physics of the problem. These derivations are of

fundamental importance for the real-world application problems.
5.4 Upwind formulation.

Low order centered discretization of the convection term in (5.6), via for example
a GWS FE formulation is known to result in spurious oscillations which is illustrated

in previous sections. Using the upwind finite difference representation instead,

0g Q- Qi
R (5.19)

prevents this from occuring. The result is the first order space accurate scheme which

in a one-dimensional case produces the following computational stencil expression

h h
~(1+ Qi1+ 20+ )@ — Qi =0 (5.20)
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Expanding (5.20) in Taylor series, collecting the terms and neglecting high order

error contributions yields

g uh\ 9%q

and the use of the first order upwind formula (5.19), thus introduces artificial diffusion
of the amount uh/2.

Note, that unlike the high order correction of the fourth order method, both Lax-
Wendroff and upwind error corrections are independent of the physics of the problem
(via viscosity parameter €). In fact, for u = 1 both are linearly proportional to the
time/space discretization size hinting similarity of the underlying ideas albeit tran-
sient vs spatial interpretations. The next subsection thus concentrates on comparing
upwind and high order corrections in the steady-state case, with a unified time-space

correction approach investigated later on in the chapter.
5.5. Upwind vs. High order = monotonicity vs. accuracy.

Two seemingly similar, but distinctly different problems, namely shock capturing
and sharp boundary layer resolution, piecefully coexist in the realm of analytical
research in the CFD field. It is well known that while first order upwind type methods
are preferable to deal with the first problem, with high order methods failing miserably
in the shock capturing task, high order resolution is required in the later case. Various
methods have been developed recently to deal exclusively with shock wave problems

92



(Leonard 1991, Hu and Shu, 1998, Iannelli, 1999) with solution monotonicity being
the driving force behind the method derivation. The accuracy is clearly not an issue
in this case and the first order deals with the problem, providing excellent solutions.

Sharp boundary layers of the convection dominated problems present a signifi-
cantly different challenge. While at the first glance, sharp boundary layers have a
shock-like appearance, they are not infinitisemally small surfaces along which solution
properties change in a jump, but rather finite, if not very sizable, subdomains with
abrupt but continuous change in solution characteristics. Solution resolution inside
of the layer as opposed to simply identifying its location, thus becomes extremely
important, and cannot be achieved by shock capturing methods with their design low
order of accuracy.

Figure 5.1 ! presents solutions obtained for the steady-state one-dimensional ad-
vection diffusion equation (5.6) with viscosity parameter set to ¢ = 0.001 on a uni-
form 21-node mesh. Figure 5.1a presents fourth order solution, while Figure 5.1b.
illustrates numerical solution obtained using the upwind formulation (5.20). In ac-
cordance with the previous results, high order solution is overdiffused, signaling in-
sufficient mesh refinement for adequate layer resolution. In contrast upwind solution
evidences expected monotonicity and allows for identifying boundary layer location.

As expected, upwind formulation does a better job in its design goal of effectively

lall figures may be found in Appendix I
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locating potential solution discontinuities. As illustrated earlier high order method
would require additional mesh refinement.

Figure 5.2 shows comparative method performance in resolving solution inside of
the layer. Figure 5.2a gives solution computed over the entire solution domain for
¢ = 0.05 on a uniform 11-node mesh, while for illustrative purposes only Figures 5.2b
and 5.2¢ are limited to the portion of the domain containing the boundary layer.
Results in Figure 5.2b were computed for € = 0.01 on a 41-node uniform mesh, while
Figure 5.2c is for £ = 0.001 on a 401-node uniform mesh. Exact solution is shown as
a dash line for comparison.

Numerical results confirm that high order correction method allows for superior
resolution of interior layer features. Its performance is enhanced by the error correc-
tion dependence on the value of the viscosity parameter £, which provides an optimal
amount of artificial diffusion for various levels of physical diffusivity. First order ac-
curate upwind formulation fails to resolve the layer and additional mesh refinement
does not result in significant improvement. These results emphasize the important

distinction between shock capturing and layer resolution.

5.6. Uniformly high order time-space corrections.

The high order spatial discretization approach developed above provides a unique
way of unifying time-space correction approaches. The spatial discretization correc-
tion theory complements the Lax-Wendroff error corrections with its spatial counter-
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parts, thus allowing for a uniform high order approximation in both time and space,
while retaining solution matrix bandwidth of lower order methods. Since the ini-
tial three-node spatial discretization is the theoretical goal of algorithm development
in one dimension, it is important to avoid the use of third and higher order space
derivatives at time step n+1 in (5.10). This can be achieved by setting =1/3. The re-
maining second order time derivative, which in turn introduces third and fourth order
space derivatives into (5.10) via (5.8-5.9), is then evaluated at the time step n which
does not increase the computation cost in any meaningful way, since these become
parts of the residual (right hand side) formation. The solution matrix bandwidth does
not increase in this case. It is necessary to note at this point, that while in general the
non-diffusive trapezoidal rule #=1/2 is the weapon of choice in evaluating (5.10), and
6=1/3 algorithm by itself usually produces unacceptable computational results, the
developed high order correction theory is demonstrated below to completely remedy
this problem, allowing for a uniformly high order space-time discretization.

The fourth order accurate time algorithm written for 6=1/3 requires the following

evaluation of (5.9)

nil o O (_uaq"“ a2qn+1> | 2At <_ oq" 82q”)

q — 4 3 oxr te 02 3 “ax +68x2
(5.22)
AtZ 282(]” a3qn 284(]”
6 (u 0z _2U68x3 e 8x4> =0
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The three-node spatial discretization of (5.22) is

Atu
Q?H - QF + T(CHQ?:I + CLQQ?H + G3Q?j:11)

—T(CMijll + G5Qj+1 + GGQ]'LI) =
2Atu n n
3 (alQ?_1 + CLQQ]' + a3Qj+1)
2Ate n n n
"‘T(%Q]‘A + a5Qj + aﬁQjH) (5-23)
AN TR n "
+ 6 (CL4Q?_1 + a5Qj + aGQj+1)
- 3 (bl j—2 + bZQ]‘71 + b3Qj + b4Qj+1 + b5Qj+2)
+ 6 (CIQ]'_Q + CQQj_1 + Cng + C4Qj+1 + C5Qj+2)

where Q)7 replaces ¢" as a fully discrete nodal solution and b;,¢;,@ = 1,...,5 are the
coefficients of the central five-node discretizations of third and fourth order derivatives
respectively. Note that both are evaluated at the time step n and thus do not result

in the solution matrix of larger bandwidth. Coefficients are given by

1 1 1 1

by = T ops by = ek by =0, by = Bk bs = B (5.24)
1 4 6 4 1

c1 = ﬁ, Co h,4, C3 = ﬁa Cy4 h47 Cs = ﬁ (525)



The discrete expression in (5.23) provides a fourth order time, second order space
approximation. The fourth order space correction terms are derived via the theo-
retical approach of the previous sections to provide a uniform high order space-time
discretization. With Q" replacing Q7 for clarity, Taylor series expansion of (5.23)

provides

Atuh? e/\t

Atu eA\th?
Q™! + =3 Q'+ ST Qitr — TQZII - o

2N tu
3

" (5.26)

T

0" Ntuh? <2At5 At2u2>

Qx - 9 TTT + 3 + 6

<At6 At2u2> W2on At*ue At*ueh*

Nt*e? At*e?h?

To eliminate spatial derivatives of the order greater than two at time step n + 1,
whose evaluation would result in larger solution matrix bandwidth, one can now in-
troduce higher order correction terms as demonstrated earlier in the previous sections.
Rewritting (5.26) and neglecting the terms of the order greater or equal to two as

shown in (3.14) yields the following expressions

3

3 U 2u
n+1 n+1 n+1 n n
—0 + -0 — "+ —0
e e\t e * e\t g ¢

(5.27)

TTT 2 TrTrT

Atu? At
(2428 1+ dn, - A0
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Differentiating (5.27) repeatedly with respect to z yields

3 u 3 2u
Qi = Q0" + 208 — 5@+ — QL

(5.28)
JANZTRR . Nte
- <2 + 2 ) TTT + Atumexm - T TTTTT
n+l _ 3 n+1 E n+l 3 n 2_“ n
TTTT T o N\ OTT o vwar N o vazw
(5.29)
Atu? At
2¢e 2

Substituting (5.28) and (5.29) back into (5.26) allows for expressing the truncation

error in the form

@ Bl - Dlgm g 2l
3 3 3
2A\te N At o Attus AN A
eal gy (- I Yo g sa0)
12e At ™ 36e 124t o 12e At 77
u? N 1 VAN (TR JANZ T
18  12At o T2e T 36 e
Ntue Nte? =0

The unsteady analog of the modified PDE concept developed in the previous
sections for the steady-state case can be now obtained by reversing signs on the
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h* terms in (5.30). Note that only first and second order spatial derivatives need
to be evaluated at the time step n + 1 thus containing solution matrix bandwidth
expansion. Also fifth and sixth order spatial derivatives are now required at the time
step n. The uniformly fourth order space-time algorithm for the original equation

(5.6) now becomes

Aty hiu
0 (A ity Q)

<h2 h2u?/\t B e\t

2 36 3 ) (0 Q55 + a5 Q5™ + a5 Qi) =

" 20Atu  h*u
@ _< 3 12

: i —) @@+ 0@ + Q)

2Nte  At*u?  RPuPAt  h? " " "
+< 5 "6 s +ﬁ> (a4Qf_1 + a5QF + asQ ) (5.31)

At?ue n h2 At?u?
3 72¢

) (0@ 5 + 2@+ 53Q" + @y + bQ0 )

At?e? h2 A2
( 5 + % ) (1Q) 5 +QF | + Q) +caQF +e5Q7 )
h? At*ue
_i_i

o0 (diQ_3 + doQf 5 + d3QF_y + daQf + dsQ7F,y + dsQ 5 + d7 Q7 3)

h2At2e?

= (e1Q7 3+ eQf 5 +e3Q) | +eaQf +esQ7 + Qo + erQF,3)
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Nodal coefficients d;, e; responsible for seven-node discretization of the fifth and sixth

order spatial derivatives in (5.31) are given by

1 2 3
dl:_ﬁ’ dQZE; d?’:_ﬁ’ dy =0
(5.32)
5 2 1
=g BT g
1 6 15 20
61—57 €2 T 63—ﬁ, 64__ﬁ
(5.33)
15 6 1
€5 76 €6 e er 76
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Chapter 6

High order formulation for non-linear equation
systems.

6.1 Flows in a converging-diverging nozzle. Euler equations.

6.1.1 Problem statement.

Consider isenropic flow in a converging-diverging nozzle with geometry definition as
(Tannelli, 1999)

1.75 — 0.75cos[2(z — 0.5)x], 0.0 <z < 0.5
A(zr) = (6.1)
1.25 — 0.25cos[2(z — 0.5)7], 0.5 <z <1.0

The flow in the converging part is subsonic and if the oulet pressure is low enough
there will be supersonic flow in the diverging portion. When the back pressure is equal
to the design pressure ratio specific to a particular nozzle geometry the diverging flow
is entirely supersonic, otherwise a normal shock occurs in the diverging section, with
its location uniquely defined by the back pressure. Analytical steady solution is well-
known and is readily available (see for example White, 1979).

The quasi-one dimensional inviscid (Euler) equations describing the flow are

L =2+ 5= (6.2)
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where

P m _mdlnA(w)
dx
_ _ m?2 _ m? dln A(x)
E (E4+p)m _ (E+p)m dIn A(z)
p p dzx
m2

=(vy—-1) |F — — 6.4
p=t-1)|E-1 ] (6.4

Here p is density, E volume specific total energy, p pressure, A(x) nozzle cross sectional
area distribution, v ratio of specific heats. For a perfect gas this system is closed by

the polytropic equation of state

P 1
F=—4 - 6.5
v—1 2pu ( )

where u = m/p is the flow velocity. The verification steady state test corresponds to
the impulsive decrease of the subsonic-outlet boundary condition to p,,; = 0.84 which
places the normal shock at the area ratio A;/A;, = 1.09896, which corresponds to
x = 0.64675. The exact shock Mach numbers are Mj,, = 1.36989 and Mg, = 0.75274
(Iannelli, 1999).

This problem is usually employed to test algorithm capability to provide stable
transition of shocked flows to the corresponding steady-state regime (Baker et al.,
1999, Tannelli, 1999). The nozzle cross-section area distribution while continuous
with continuous slopes, evidences a discontinuous slope curvature which provides ad-
ditional insight into algorithm resolution. Since the goal of this work is to investigate
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the effect of high order spatial approximation on the algorithm performance, furher
developments concentrate on the steady-state form of (6.2) with the Dirichlet bound-

ary conditions set by the corresponding analytical solution.
6.1.2 High order formulation.

Using (6.3) one can expand (6.2) in the form

% +pudlndA( 2 _
0.8 4 0.44E 4 py22n D) — (6.6)

1498 0 2900 1 (1 4By — 0.2pu?) A0 —

or

pl 4y e —|—pudlnA( 2 =

L.6pudt 4 0.8u?% 4 0.49E 1 2204 (6.7)
LAB® 14098 — 0.6pu2% — 02032 4 (1.4Eu — 0.2pu*) 22A@ —

The second order discretization of (6.7) is obtained from (22) as
Rj(alUj_1 + a2Uj + CL3Uj+1) + Uj(ale_1 + CLQR]’ + CLgR]’_H) + RjU]’Sj =0 (68)
1.6RjUj(a1Uj_1 + a2Uj + CLng_H) + O.SU;(CLle_1 + CLQR]’ + CLgR]’_H)
(6.9)
+ 0.4(a1Ej,1 + CLQE]' + agEj+1) + R]UJZS] =0
1.4Ej(a1Uj_1 + ang + CLng_H) + 1.4Uj(a1Ej_1 + agEj + CLgEj_H)
—0.6RjUj2(a1Uj,1 + a2Uj + ang+1) — OQU]3 (ale,1 + aZRj + Cl3Rj+1) (610)
+(L4E;U; — 0.2R;U7)S; = 0
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Here, {R;},{U,},{E;} are the unknown nodal values of density (p), velocity (u) and

energy (F), coefficints a; are given by (23), and

. dIn A(l‘])

5 dz

(6.11)

In order to develop a fourth order approximation to (6.7), it is critically important
to note that each equation of the system must be considered separately. In that,
while three equations form the system, the modified PDE obtained by a Taylor series
expansion is a unique characteristic of the expanded difference equation itself. Any
term substitution among equations inside the system would therefore compromise the
consistency of the original conservation law system. This can potentially complicate
applicability of the current approach since each equation in a system includes several
independent variables thus making it difficult to reduce the order of the perturbed
PDE via differentiation.

With this in mind, proceeding with a Taylor series expansion of (6.8-6.10) at node
j, the following modified system is obtained

2

h
RU, + UR, + RUS + < [RUszs + URuos] + HO.T. = 0 (6.12)

1.6RUU, + 0.8U?R, + 0.4E, + RU*S
(6.13)

h2
+E[1.6RUUME 4+ 0.8URypy + 0.4F,,,] + HO.T. =0

104



1.4EU, + 1.4UE, — 0.6RU*U, — 0.2UR, + (1.4EU — 0.2RU?*)S

(6.14)

h
+€[1.4EUM +1.4UFE 3y — 0.6 RU*Uyyy — 0.2U° Rype] + HO.T. = 0

where R, U, E, S replace the corresponding nodal values of R;, U;, E;, S; for simplicity,
and subscripts denote partial derivative of the corresponding order.

Differntiating each equation twice with respect to = yields

RUuuz + URppe = —3RyUp — 3R Uy — Ry US
(6.15)
—2R,U,S — 2R,US, — RU,,S — 2RU,S, — RUS,, + H.O.T.
1.6RUU, 4 + 0.8U Rypy 4 0.4E, 5y = —4.8RpuUU, — 4.8R, U2
—4.8RU,U,, — RyuU?S — 4R, USU, — 2R, U%S, — 2RU2S — ARUS,U,  (6.16)
—2RUSU,, — RU*S,, — 48R, UU,, + H.O.T.
1.4EU g 4 1.4U Epgy — 0.6 RUUygy — 0.2U° Rygy = —4.2E,U,,
+1.8R,,UU, + 3.6 R, UU? + 18R, U?U,, + 1.2RU? + 3.6 RUU,U,,
—28SE,U, — 14SUE,, — 1.4SEU,, + 1.2SR,UU, + 0.2SU*R,,  (6.17)

+1.2SRUU? + 0.6SRU*U,, — 2.8S,UFE, — 2.85,,EU, + 0.4S,U°R,

+1.2S, RU*U, — 1.4S,,FU + 0.2S,,RU> — 4.2E,, U, + H.O.T.
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Substituting these back into (6.12-6.14), the perturbed ODE system leading to the

fourth order approximation of (6.7) is

du dp dln A(z;)  h* _d?pdu d*u dp

o 2P R gD PR g AP

P i * Y Tou dz * 6 [ dz? dx * dz? dx
(6.18)

d*p dp du dp ds du ds d*u d%s
tus—— + 2355 + 2u£% + 2p%% + ps— + pu——| =0

du dp de dIn A(x;)
1.6pu— + 0.8u”-= + 0.4— 1
pudx +0.0u dx + dx +ou dx

h? d2p du dp (du\> dp d*u du d?u
~[4.8u——— + 48" (— 4.8u—-— +4.8
- 6 [ Y dz? dx - dx <dx> o

du de du dp
l.4e— + l.du— — 0.6pu*— — 0.2u> =
“dr + Y 0.6pu dx 0.-2u dx

. 2 2 2
+(1.4eu — O.2pu3)%$(%) + %[4.2d—u£ + 2@d_u

du d? du\’ d dp d du\’®
182202 36y (—“) ﬁ . 1.8u2d—§d—;; —1.2p <—“>

de d d? d? du d d?
+2.8s—€—u + 1.4$u—6 + 1.4se—u — 1.25u2—u—p — 0.25u3—p
T dx z T dx dx dx?

2 2
B u\® o d U ds de dsdu sds dp
1.2spu <_x> 0.6spu ) + 2'8u_dx e + 2.86—d$ e 0.4u o dr



6.1.3 Diffusion term introduction.

The high order formulation of the previous section is applied directly to the original
system (6.2). Since a well-known characteristic feature of the physics of the problem is
the development of normal shock wave upstream of the nozzle throat, one may expect
the numerical solution to become oscillatory in the vicinity of the wave. High order
discretizations are known to exaggerate the problem due to the Gibbs phenomenon
(Harten et al., 1987, Morton and Sweby, 1987) suggesting low order interpolation
across the wave front. This leads one to look for ways of adapting the designed
theoretical procedure to solve the problem at hand.

Since most of the numerical methods attempt to resolve shocks by resorting to
various diffusion mechanisms, one immediately obvious way to proceed is to directly
outfit both fourth and second order methods with the corresponding diffusion terms

and compare their relative performance. Towards this goal diffusive terms of the form

0?p 0%u ?%e

o2 et o (6.21)
were added to their respective equations in both methods. Approximation of these
terms could be carried out in a manner consistent with (4.8) with no additional
modifications made to the developed fourth order system (6.18-6.20). As a result its
approximation order is reduced to that of the second order system. Of course, this
rather rude development is not expected to produce very accurate results. In fact,

the resulting numerical solution is overly diffused as shown in Chapter 7.
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While one might argue that a uniformly fourth order method could remedy the
situation, all attempts to design one directly following the theoretical procedure de-
veloped above did not succeed, due to the lack of symmetry in the partial derivative
groups, which was the direct result of adding the diffusive terms. For the uniformly
fourth order approximation to be achieved, it is therefore necessary to search for some

other ideas for implementing this strategy.

6.1.4 High order formulation for Euler equations.

As noted, the theory applicability rests on the possibility of expressing higher order
derivatives via their lower order counterparts achieved via repeated differentiation
of the corresponding modified equation which is in turn obtained by a Taylor series
expansion. For this technique to work for conservation law systems the approximating
difference equations must possess certain symmetry among different partial derivative
group entries of the system equations. It seems that in general some additional work
is required to formulate the system in a desirable symmetrical form. In the particular
case of Euler equations one can achieve this goal by a relatively straight forward
analysis outlined in this section.

Since any implementation of the developed theory implies the ability to express
high order derivatives via those of lower order, introduction of a second order diffusion
term is a necessary condition. As shown in the previous section, direct introduction
does not yield satisfactory results, hence the approach requires optimization. It is
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clear from the theory developed for the advection-diffusion problem that the equation

of the type

dq(x) gdZQ(l")

I 03 +s(xz) =0 (6.22)

can be efficiently approximated by the designed discretization procedure, regardless
of the exact form of the functions ¢(z),s(z). The later is true since the unknown
function ¢(z) is to be included symmetrically into the modified equation as defined
by approximation (4.8). The source function s(x) is to be differentiated twice in
developing the fourth order modified equation, thus producing various combinations
of at most second order derivatives of the unknown variables, whose three-node dis-
cretization is then available via (4.8).

With this in mind consider the following substitution

fi(z) = p(z)u(z)
fa(z) = 0.8p(x)u?(z) + 0.4e(x) (6.23)
f3(z) = Lde(z)u(x) — 0.2p(z)u?(x)

The backward transformation is provided by

pz) = {Ll((;))
e(x) = 2.5fo(x) — 2f1(x)u(x) (6.24)

3fi(z)u?(z) = 3.5f2(z)u(r) + f3(x) =0

Hence, for given fi(x), fo(z), f3(z) and u(x), the nodal values of p(z),e(x) can be
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found via (6.24). The parent Euler equation system (6.2) is now replaced by

;

x 2 xr n x
df:i;) _ﬂ({;g ) +f1(x)d1 ;‘;( i) —
dfs(z) €d2f3($) + x dln A(z;) _
dfa( ‘)i‘” d?f (d";2 f3( ) ddlflA(fv) (6'25)
o — e 4 fi(r)u(r) =7~ =0
| 3fi(x)u*(z) — 3.5 2(z)u(z) + f3(z) =0

with the corresponding Dirichlet boundary conditions found from (6.23). Substitution
(6.24) appears to be rather general and can be applied when dealing with multidi-
mensional steady inviscid equations. It results in a system (6.25) which is larger than
that approximated via the perturbed PDE analysis of the previous sections. The
disadvantage of solving larger number of equations is therefore offset by the ability
to efficiently implement a high order formulation.

In the present case this substitution results in further simplification. The first two
equations are linear and not coupled with the rest of the system. They can be solved
independently, providing the nodal values of fi(x) and f3(z). With these in hand

fo(z) and u(z) are then found by solving

df2 ()
dx

d? f>(x) din A(zj)
— & 5>— + f1(x)ulx =0

3fi(z)u?(x) — 3.5 fs(x)u(z) + f3(x) =0
and the nodal values of p(x),e(x) are determined from (6.24) by simple substitution.
The second order approximation of (6.25) is obtained via (23). Development of the
fourth order formulation starts by noting that the first two equations are of the form

(6.22), which is considered as a general generic equation. Its second order formulation
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via (23), followed by Taylor series expansion leads to the following modified equation

hZ
Fy—cFyo+ FS + = | Fozz = %me +HOT. =0 (6.27)

Here, F' = F; are the nodal values of the unknown function f(z), and S = S,
are the nodal values of the source function given by (6.11). Rewriting (6.27) and

differentiating the resultant expression by x and zx yields

1
Fop = —[F + FS]+ HOT. (6.28)
1
Frow = E[F” + F,S+FS;]+ HO.T. (6.29)
1
) — E[F’””” + FppS + 2F, S, + FSy| + HO.T. (6.30)

Substituting (6.28-6.30) back into (6.27), then reversing the signs of the correction

error terms, provides the generic fourth order perturbed ODE in the form

df  f  dlnA(g) b [d2f ﬁﬂf@]

dzx 6dx2+ dzx C12e @jLde dzx

R* [ d*f ds df d*f
— |s—= +2—— — | =0 6.31
12 [de2 * dx dx N fdﬁ] (6:31)

The next step is development of the fourth order approximation of (6.26). Since
the second equation in (6.26) does not contain partial derivatives, hence will not

produce truncation error terms upon its discretization, only the first equation of the
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system requires modification. Noting again that the exact form of the source term is

of no relevance in the present analysis, and making the convenient substitution

dln A(z;
o) = Ry T2y —y = R, (632
one obtains the following modified equation
h? £
F,—cF,,+Y + E[me — §me] +HOT. =0 (6.33)

Rewriting (6.33) and differentiating it repeatedly with respect to z yields the

following expressions

1

Fpo =-[F, + Y]+ HO.T. (6.34)
£
1

Frpe = ~[Fpw + Y] + HO.T. (6.35)
9
1

Froor = —|[Faze + Yau| + HO.T. (6.36)
9

which upon substitution into (6.33) results in the following fourth order perturbed

ODE

df 6d2f2 " h? <d2f2 @) h? d*y

12 12 da?

=0 6.37
dr?  dx ( )
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The complete fourth order perturbed system is now

e

df1_6M_|_fdlnA$J _h_2[df1 +8df1 +f ]

dx dz? 12¢ | dz?
b [s%h +22d 4 28] =0
- colv o) g [5h ot fi] +
< 15 s 2mel 1+ | =0 (6:38)

dj d dln A( 2 | d d
B el 4 fruttg @) B[Pl s g st 4+ fud] +

h2 df1—|—28 du df1 4 2 ds dft +2f1g;zz—|—f18dx2 +f1 d:v2:| =0

12 5722 dz dx dz dz

3fi(z)u?(z) — 3.5f2(x)u(r) + f3(x) =0

6.1.5. Spatial filtering.

\

The numerical solution computed using the developed fourth order method may
still require some additional work in and around the sonic throat. Spatial filtering
technique outlined by Visbal and Gaitonde (1998), is the method of choice in this
section. Being a postprocessing operation this method allows for selective phase
filtering of dispersive error modes, while retaining a uniformly high order of the filtered
numerical solution. Denoting a component of the solution vector by @, filtered values

@’ can be obtained by solving the following tridiagonal algebraic system

N

0y QL +Q +asQL = 37 T Qi + Qi) (6:39)

n=0

This formula provides Nth order filter with a 2N + 1 node stencil. It can be shown

that the spectral function of the filtering operator (6.39) is

srlo) - Fpated o
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The symmetry of the operator (6.39) provides for SF' to be real and non-dispersive.
The N +1 unknowns a; are derived by Taylor series analysis, while o is retained as a
free variable which must remain within the range —0.5 < ay < 0.5, where ay = —0.5
delivers the largest amount of diffusion. Derivation of the 8th-order filter is given
below for clarity.

Derivation of the 8th-order filter requires setting N = 4 and (6.39) is rewritten as

O‘fo 1+ Qf + OészH = _4(Qi+4 + Qi—a) + %(in + Qi—s3)
(6.41)

+ %(QiJrZ + Qi 2) + %(QiJrl + Qi1) + aoQ;

Performing Taylor series expansion of nodal solution entries in (6.41) around node j

yields
Qis1 + Qit = 2Q; + QY +7 Q + %Q + H.O.T. (6.42)
hﬁ
Qipz+ Qi o = 2Qi +402QP) + —Q I Q¥ + HO.T. (6.43)
27h! 14
Qirs + Qis = 2Q; + 9h2Q? 7TQ§4’ 48 i = QY% +HOT. (6.44)

L 640 oy, 5120

Qiva + Qi_q = 2Q; + 16R2Q% 3@ = Q¥ +HOT. (6.45)
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Substituting (6.42-6.45) into (6.41) results in

h* aph®
9 nNo’ + 2 f2)  of f(4) f f(6) _
9
Qilao + a1 + as + as + as) + hQQEQ’(% + 2a5 + % + 8ay) (6.46)
2a 27a 32a a 4da 8la 256a
X (4) ay 2 3 4 X (6) 41 2 3 4
T (24 3 8 + 3 )+ 10 (720 45 80 45 )

Since the goal is to match the coefficients of the corresponding series up to the
8th-order, (6.46) provides four equations for five variables. The missing equation is
given by the condition SF(7) = 0 which eliminates the odd-even mode. Solving the

system yields

93+ 70y 7+ 18y T+ lday
="y 0 T g 0 2T Ty 617
6.47
1 Oéf 1 Oéf
9 - .Y ~0
B=1 "8 MTT1mTe 0

6.1.6 Time dependent formulation

Now consider the time dependent formulation. The governing Euler system of
equations remains (6.2). Introducing the second order diffusive derivatives and fol-

lowing the substitution pattern accepted for the steady-state case modifies it to

() =0
(6.48)
3fi(x)u?(z) — 3.5 2(x)u(x) + f3(x) =0

where ¢, f and s are given in (6.3). Unlike the steady-state case, this is a coupled
system of four equations and its only advantage over conventional high order for-
mulations is in the equation symmetry, which in turn allows for containing solution
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matrix bandwidth expansion. Note that the extra compatibility condition is a simple
algebraic equation which must hold at all nodes of the solution domain. Its imple-
mentation does not require computational effort and extensive theoretical analysis
usually accompanying numerical solution of differential equations.

The initial conditions are provided by the exact sonic, shock-free isentropic flow
solution. The Dirichlet boundary conditions at the inlet are set equal to the initial
condition. The outlet pressure is fixed to result in the normal shock wave propagating
upstream as discussed for the steady-state case. This condition is relaxed when
supersonic flow is achieved at the outlet during a numerical calculation.

Assuming sufficient continuity and performing semi-discretization in time using

the standard #-implicit method approximation yields

dQn+1
dt

aQ"
dt

Q"' =Q"+ At <9 +(1-10) ) +O(A) (6.49)

Here, @) is the nodal value of state variable ¢ and n is the current time step.
Substituting (6.48) into (6.49), selecting non-dissipative trapesoidal rule (0=1/2)

for time integration and neglecting high order time derivative terms results in

At [ 9F™ g
Qn+1 — Qn 4 7 (_ S + Sn+1)

0x ox?
(6.50)
At OF™ 0*F" "
+ = tes+S

2\ or 02

where F, S are nodal values of functions f;(z) defined by the substitution (6.23) and
source function s(x) respectively.
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Rewritting (6.50) in the form

Qn-i-l i

At (aFn-H aQFn-i—l B Sn-l-l) _

2 ox 02
(6.51)
At [ OF" O*F™
n I qn
@5 (ot )
and introducing second order spatial discretization via (22) yields
n+1 At n+1 n+1 n+1
Qi + T(GIFJ'A + @ FT 4 a3 k)
Ate n n " At
(6.52)
At
QF — 7(01F3n_1 +axFj' + azF} )
Ate n " " At
+ T(G4ij1 +asFj' + aF)y) + 753'

This completes development of the second order numerical formulation. The
fourth order spatial approximation is now thought via Taylor series analysis. Making
the usual assumption of spatial mesh being sufficiently refined, expanding the second
order stencil form (6.52) around node j, one obtains the modified PDE in the form

At Ath? Nte Ateh? At

Q" + TF;?H 0 Fptt = TF&H ~ o1 Frt — 75n+1 =
(6.53)
At Ath? At Ateh? At

where @, F, S replace nodal values @);, F}, S; for clarity and subscript denotes the

corresponding spatial derivative. Collecting the terms of the order A% and neglecting
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higher order terms leads to

At At Ate Ate At
n+l n _Fn+1 _Fn__Fn+1__Fn__Sn+1
(6.54)
At h2 At € £

The following relationships then follow from (6.54) by differentiation. Recall that
the fact that higher order terms in the modified equation (6.53) can now be neglected

was proven in (3.14).

%Fﬁjl =" - Q" + %F;“ + %Fg — % = %5”“ — %Sn (6.55)
FrHl = AithnJrl _ Aithn 4 éF;H i %Fg . %Snﬂ _ ésn (6.56)
i = Qo QU CEL 4 - L, - ST - 1T (65)

it = Q= Qb SR Ll — Fluyy — SS - 28T, (658)

These can now be substituted back into (6.54), to express third and fourth order

spatial derivatives via their first and second order counterparts, thus allowing a three-
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node spatial discretization.

At Ate At
n+1 _Fn+1 - Fn+1 - _Sn+1
AN 1 1 1 1
n+l = ~n+l _Fn—i—l _ _Sn-i-l _Sn-i-l —
12 [Atst AtQm * 2e "7 2 7 * 27" ]
(6.59)
At Ate At
n_ —"rm Fn =" an
@ 2" * 2 * 2 S
h2 At 1 1 1 1 1
_ e alre ) —_Fnr _ . gn —gn
12 [ Atst N At 7T * 28 " 27 * 2 vl

The modified time-discretized PDE providing the fourth order spatial discretiza-

tion is obtained from (6.59) by reversing the signs on the h? correction terms as

At Ate At
n+1 _Fn+1 _ Fn+1 _ =" aontl
AN 1 1 1 1 1
- n+l = "n+l _Fn+1 - _Sn+1 _Sn+1 —
12 [AteQ’” At N 2" ** 2 " * 2" ]
(6.60)
At Ate At
n_ " pn ey nl{’ —
@ 2 7 * 2 " * 2
h2At 1 1 1 1 1
IS 12 e _fn _ . gn —gn
12 | AtsQ‘” * At * 27" 2 F * 2 o)

Fully discrete computational implementation is now obtained by using regular
second order spatial approximation formulation (4.8), with the correction terms pro-
vided by the modified PDE analysis increasing the spatial approximation order to

four. Time intergration is still carried out via the trapesoidal rule (6.49), thus result-
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ing in the second order time accurate algorithm.

At
Qi+ 7(@1173”_*11 +ap P+ as )
Nte  h2At At
—_— +1 +1 +1 11
() e et ) - Gy
h? 1 L ) h2 . : 1
~1gz (@QFT + QT+ asQEN) + (@@ + as@T + a6Qf)
—i——hQAtSI”Jr1 — _h2At52n+1 _
24e I o4 “% =
(6.61)
At
Qf — 5 (@ FLy + aFf + a3 F )
Nte  h2At At
(550 @r vl ook + 5y
h2 h,Z
—l—@(mQ?q + azQ? + a3Q?+1) — E(CLLLQ;TL1 + a5Q§? + CEGQ?H)
h? At h2 At
- S1% Son
24 Y + 24 j

Here S1;,52; denote first and second order derivatives of the source term (6.11).

6.2 Incompressible Navier-Stokes equations.

6.2.1 Q-V algorithm.

Navier Stokes equation set governing two-dimensional flow of viscous incompressible

fluid is written as (see for example Baker, 1983)

Ou;

- 62
7 0 (6.62)
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ou; 0 P b;
—— | winy + —di; — 0yj e -
T o (u u; + p UJ> + o 0 (6.63)

where py is the constant density, u; is the two-dimensional velocity vector, b; is the

body force, p is pressure, o0;; is the Stokes stress tensor defined as

v [(Ou;  Ouy

and nondimensional groups are defined as

UyxL
Re = (6.65)
I/OO
U2
Fr=->= .
r=1 (6.66)

The constant density restriction allows for introduction of streamfunction and

vorticity variable set v, w via

u=vx vk (6.67)

w=v xu-k (6.68)

which recasts the original system (6.62-6.63) into

ow 1 _,
EWL(VXT/)k'V)W—EV w=20 (6.69)
Vi 4+w=0 (6.70)
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with pressure being determined as a postprocessing operation via

2 2 2
iVQp—wz—i-aw 31/)+281,/) =0

20 ox?  0y? oxdy

(6.71)

Neglecting body force contribution, writing (6.69) in a component form and re-

membering definitions (6.67-6.68) yields the Navier Stokes system in the form

ow ow ow 1 0w 1 0w B

a—l—ua—xjwja—y—ﬁ@—ﬁa—y?— (6.72)
%-F%-FWZO (6.73)

v g_:j (6.74)

v = g_i’ (6.75)

6.2.2 High order formulation

Equation (6.72) is recognized as unsteady advection-diffusion equation whose high
order fomulation was developed in the previous sections. Completion of the high order
formulation for this problem class therefore rests on the corresponding development
for the stream-function Poisson equation. Assuming existence of the appropriate
boundary conditions, generality of the developed theory readily provides a required

extension. Here, one proceeds along a well established by now design sequence.
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Spatial discretization of (6.73) on a nine-node computational stencil results in
Wij+ VitV + Wi+ Wi+, +
+esWitr; + Wiy jp1 + VWi +coWiprj11 =0 (6.76)

The approximation requirement as dictated by (6.73) and Taylor series expansion

of (6.76) is

chZO

n=1

—61+03—C4+06—C7+09:0
—ci—C—c3+cr+ceg+cg=0

2
C1+C3+C4+CG+C7+ngﬁ

2
61+02+03+C7+Cg+09:ﬁ (677)

01—03—C7+09:0

69—01:0

Cg—i_Cl:W
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cs—c;r =0

which results in

1 2 1 2 10 (6.78)
C1 = —— Co == —— Cq = —— Cp = —— Cr —= ——— .
" 6hY SREVZ > 6h2’ RNEVER ST 3k
2 1 2 1
CTam e CTam 0w (6:79)
and reduces the corresponding truncation error expression to
h? h? h?

Differentiating (6.80) by zz and yy, neglecting high order terms and taking the

linear combination of the resulting expressions, yields

zpmcmc + 21/)mcyy + ¢yyyy = —Wgg — Wyy (681)

Substituting (6.81) into (6.80) and reversing the error term signs provides the

desirable fourth order accurate perturbed PDE in the form

b e o
“ 0x?  Oy?

0%y 0% h? [(0Pw O*w
oz 9y? 12< >_0 (6:82)

The modified continuous system comprised of four coupled equations written for

four variables w, 1, u, v now is

Ow 1
a—i—u-Vu}—ﬁv-Vu}—

2
h geu V(u-Vw)=0 (6.83)
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2

h
w—i—V-Vz/)jLEV-Vw:O (6.84)

_
u=73, (6.85)
_

with pressure being determined via (6.71) as a postprocessing operation.

6.2.3. High order formulation for general Navier-Stokes equation forms.

The two-dimensional Navier-Stokes momentum equation is

ou; 0 1 1 Ou;
ot * 0z <u it pgp 7 Re 8:Uj> (6.87)

In order to derive a high order perturbed PDE for a general form in (6.87) the pressure

contribution is momentarily neglected and equation is expanded as

U= + u; - =
ot ox; ’0x;  Re ax?

(6.88)

In the case of incompressible equations (6.62), equation (6.88) is reduced to

. i p— 6.89
ot U dr; Re 633? (6.89)

and its high order counterpart recalling the pressure contribution is given as (6.83)

. . 2 .
ou,; 0 ( 1 1 Ou; h’Re 8ul> _0 (6.90)

=Ny + —psy; — — _
ot +8xj it +p0p 7 Re 0z, 12
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For the current theoretical analysis to be applicable in a more general case (6.87),

equation is symmetrized as

3uz- 0uj 3uz 1 62ui aQU,]‘

+ Ui + u; - = T
ot l@xj J dz; Re 63:? 0x?

J

=0 (6.91)

where 7 — 0 is a parameter similar to the viscosity parameter of the advection-
diffusion formulation.
From symmetry, recalling the theoretical developments detailed in Chapter 4 one

easily arrives at the high order perturbed PDE for the general form (6.87) as

aui_|_i u.u._|_i 5_iauz 7—%
ot Ox; \ " pgp Y Re 0z, 0z

(6.92)

B 0 h2Reu-u ou; N h? o Ou, _0
0z 12 7 kaxk 127 " kaxk B

thus recovering the general TWS formulation form as outlined by Noronha and Baker
(1989) (see also Noronha (1989)). This high order formulation will remain essentially
unchanged in three dimensions, provided the mesh size measure h is generalized via
an appropriate combination of Az, Ay and Az. Of course, the application of the
correction terms is again governed by the physics of the problem as dictated by
the theoretical design. It is important to emphasize that this latest development
(6.92) is only true in the case when general compressible equation forms are under

consideration.
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6.2.4. FE-like matrix formulation. Assembly procedure

If finite element based software is to be employed in numerical computations,
one may needs to establish a clear connection between the computational stencil ex-
pression characteristic of the developed high order approach and matrix formulations
resulting from finite element variational statements. Once discrete stencil expressions
are converted to matrix notation, the entire formulation can be implemented using
any finite element computing environment. Since a nine-node stencil of the form
(6.76) is used in present theoretical formulations, this section concentrates on finite
element formulations employing bilinear test and trial function sets.

The end point of a variational formulation as applied on a single element of the
solution domain is the derivation of the corresponding matrix statement written on
this element, whose subsequent assembly results in a computable stencil expression
similar to the one in (6.76) which in turn provides the numerical solution over the
entire computational domain.

When bilinear basis is used in a formulation, the matrix statment for a linear

steady-state problem is always expressed as (Baker, 1983, Chaffin, 1997)

B T (
11 Q12 Q13 A4 Q1 W
Q21 QA2 Q23 A4 Qz
< >y = {0} (6.93)
31 dz2 (33 (34 Q3
i Q41 Q42 Q43 Q44 1\ Q4 J

where (); is the nodal numerical solution and the coefficients a;; depend on the trial
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and test function sets and on the partial differential equation itself. A nine-node
discrete stencil expression obtained via assembling (6.93) on four adjacent elements

then is derived as (Chaffin, 1997)

a31Qi—1j—1 + (as2 + a41)Qij—1 + a12Qi1 -1 + (aza + a21) Qi1
+ (@11 + az + azz + a44) Qi (6.94)

+(ags + a12)Qit1,j; + a24Qi1,j+1 + (a23 + a14) Qi j+1 + a13Qit1,541 =0
Comparing (6.94) to (6.76) one easily obtains the following relationship between

the discrete stencil coefficients

€1 = a3y, Co = Q39 + Q41, C3 = Q42, C4 = Q34 + G321
Cs = A11 + 929 + 33 + Q44 (695)
Ce = Q43 + G12, C7 = Q24, Cg = Qg3 + Q14, Cy = Q13

This system provides a set of conditions that must be satisfied to establish a one to
one correspondence between the bilinear matrix forms of the finite element method
and the developed high order spatial formulation.

Denoting as {Q} and {¥} the solution vectors corresponding to continuous vari-

ables w and ¥ in (6.72-6.75), and using expressions (6.78-6.79), (6.95) yields the
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following fourth order accurate discrete stencil expression for (6.76)

1 2 1 2 10
Qij + W“Ijifl,jfl + W\Iji,jfl + W\Pzﬁrl,jfl + W‘I’iq,j - W‘I’i]‘
2 1 2 1
+ W\Ijﬂrl,j + W\I’Fl,jﬂ + W\Iji,jJrl + W‘I’iﬂ,jﬂ (6.96)
1 1
+ 7g Qim1g = 20+ Qivag] + 15 [ Qi = 2045 + Qi) = 0

which can then be transformed into the matrix statement

w0 o2 2 (e ) [2 2 ¢ 2](q)
3hZ  3h2 3h2 1 3 12 12 1
2 0 0 5 v, L 0 0 0 Oy
3fll,2 ) 6h2 > + 12 X > = {O} (697)
& & 0 0 A 0 L 00 Qs
0 = 0 0 2 0 0 0 0 Qy
L . \ 7 L . \ 7

ready to be used by a finite element computing environment. With the TWS nu-
merical implementation details of (6.72) given by Chaffin (1997), this concludes the
development of the high order formulation for the incompressible Navier-Stokes equa-

tion class.
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Chapter 7
Results and discussion.
7.1 Undetermined coefficients approach.

7.1.1 Convergence study results.

Since an analytical solution is not generally available, the following analysis (Baker,

1991) is used to confirm predicted convergence rate of the developed methods. For

the lead term of the truncation series expansion given in the form
error’ ~ Cyh**
and using
TV + e = Topoer = T"? + €M
one can easily verify, that
et = (22k)h/2

and therefore

ha ATh/Q

Th/2 . Th — (22k . 1)€h/2, e — T

Here AT"? = T"? — Th denotes the computed difference in the two

(7.1)

(7.2)

(7.4)

approximate

solutions. Selecting a log representation, the slope of the convergence curve should

be

log(eh/M) _ log(eh/ZM) _ log(eh/M/eh/ZM)
log(h) — log(h/2) log(2)

slope =
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Results of a convergence study computed for (3.1) on uniformly refined discretiza-
tions for ¢ = 0.1 at the mid-node of the solution domain are shown in Table 1 2.
All presented solutions computed for u = 1 were smooth (oscillation-free). The data
adhere to the theoretical convergence prediction, confirming the order of the lead

truncation error term for each method.

7.1.2. One-dimensional steady-state problems.

Solution evolution for ¢ = 0.001 is shown in Figure 7.1 with number of nodes
Nnode. Presented are numerical solutions computed using fourth order (3.18) and
Galerkin linear basis (3.7) methods. Even for this modest value of ¢, Galerkin linear
basis solution remains oscillatory in the boundary region for all considered discretiza-
tions. The well known monotonicity constraint (Fletcher, 1991, Roy and Baker, 1997)
applied to € = 0.001 states that at least 500 nodes are needed for Galerkin linear basis
discretization to produce a non-oscillatory (monotone) solution.

In contrast, fourth order method solutions remain monotone independent, of Nn-
ode, albeit overdiffused on the coarse (Nnode=21) mesh, in full agreement with high
order method results reported by Fletcher (1991). While the coarse mesh solution
is clearly overdiffused, a reasonable 121-node discretization of the solution domain
allows for computing an acceptable solution. Further refinement results in a highly

accurate monotone solution for Nnode=221.

2all Tables may be found in Appendix II
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Figure 7.2 illustrates solution evolution for the stationary wave problem, as ob-
tained for ¢ = 0.001 and various discretizations. The equation remains (3.1), while

boundary conditions are modified to

q(0) = -1 q(l) =1 (7.6)
and
~1 for 0<z<?i
u = d - 2 (7.7)
1 for % <z <1

The numerical data confirm the trends in Figure 7.1, in that the fourth order
method solution is monotone for all discretizations, with solution accuracy improv-
ment on refined meshes. The Galerkin linear basis solutions remain oscillatory for all

cases.

7.1.3. One-dimensional unsteady problems.

Numerical experiments were conducted for u = 1, 0.2 < t < 1.4, on a 41-node
uniform mesh with A = 0.05. The time step was varied to produce different Courant
numbers. The analytical solution (3.27) was used to set initial and Dirichlet boundary
conditions.

Figure 7.3 shows solution evolution for ¢ = 0.01 and ¢ = 0.001. Compared are
the fourth order (3.39) and the Galerkin linear basis method solutions. Achieving a
uniform fourth order accuracy in space and time would require a fourth order time
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integration algorithm. Instead, the non-dissipative trapesoidal rule is used to focus
on solution dependency on the order of spatial approximation. Both methods are
therefore second order accurate in time.

Both methods performed equally well for £ = 0.01 producing accurate solutions for
a considered range of Courant number. Decreasing the value of ¢ steepens the prop-
agating wavefront creating difficulties in resolving the resulting gradient. The fourth
order method evidences leading dispersive oscillations, that diminish with increase
of the Courant number and completely disappear for C' = 1. This is particularly
attractive, since for a fixed spatial discretization size larger Courant number means
larger time step, thus allowing for a faster solution process. This trend is completely
reversed for the Galerkin linear basis solution. In that, all considered solutions are
unacceptably polluted by the trailing dispersive errors, with magnitude of the oscil-
lations increasing with Courant number.

The fourth order method performance for C' =1 is examined in Figures 7.4a and
7.4b for different values of the viscosity parameter €. Both simulations produced
monotone error-free results. For small values of £, the original advection-diffusion

equation (3.26) asymptoticaly approaches the non-diffusive hyperbolic equation

oule,t) , Dala,)

ot or 0 (7:8)

The ability of the fourth order method to resolve sharp shock-like wavefront gradients
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for C=1 corresponds to solving (7.8) with £ approaching zero in (3.39). Figures 7.4c-
7.4f document the results obtained using (3.39) with € set to 0.0000001 for the initial
wave front a sine wave, Figure 7.4c, and a two-node square wave, Figure 7.4e. Initial
condition is shown as a dashed line on all plots. Wavefront locations are shown
after 18 and 20 time steps respectively. Fourth order method simulations produced
excellent results, while the Galerkin linear basis comparison solutions, presented for
comparison, are totaly destroyed by oscillations. One must note that, while several
methods can produce nodally exact results for equation (7.8) with Courant number
of one, the developed fourth order method solutions presented in Figure 7.4 are never

nodally exact.
7.1.4. Two-dimensional steady-state problems.

Data as generated for the convergence study obtained for the fourht order method
(3.59) and the sixth order method (3.64), on uniformly refined discretizations for e = 1
at the mid-node of the solution domain, are shown in Table 2. All presented solutions
were computed for u=v=1. Data adherence to the convergence curves confirm the
order of the lead truncation error term for each method.

Numerical solutions computed on a uniform 11x11 square mesh for various values
of ¢ are presented in Figure 7.5. Compared are the fourth order method (3.59) and the
Galerkin bilinear basis solutions. Both methods produce acceptable solutions for ¢ =
1, with the fourth order method solution being nearly nodally-exact. The Galerkin
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bilinear basis solution is totally destroyed for the convection dominated problem with
e = 0.001,0.00001. Conversely, the fourth order method yields nodally accurate
monotone solutions, demonstrating the theory’s ability to resolve sharp gradients in
a boundary layer, as formed due to the small value of ¢.

Figure 7.6 depicts the method’s performance when applied to the slightly more
challenging problem, corresponding to boundary conditions (3.42) while (3.43) is re-

placed by the adiabatic conditions,

Oq(x,1) _ 9q(1,y)
Oon Oon

—0 (7.9)

This allows examining solution behavior in the absence of exact nodal boundary data,
hence admitting more severe boundary layer oscillations.

Solutions were generated at € = 0.005 for progressively refined computational
grids. The general trends remained unchanged from those shown in Figure 7.1 for
the one-dimensional case. The Galerkin bilinear basis solution is oscillatory in the
boundary layer region for all considered discretizations, with oscillation magnitude
decreasing with increased mesh density. The fourth order method yields monotone
results on all discretizations, including the inaccurate, overdiffused solution on the
coarse 11x11 grid. It significantly improves with modest mesh refinement, resulting
in an acceptable, while still diffused, solution on a 31x31 node mesh. It showes sharp
boundary layer resolution on a 51x51 node mesh. Note again, that the bandwidth of
the solution matrix remains the same in all cases.
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7.2. Perturbed equation approach.

7.2.1. One-dimensional problems on uniform mesh.

Convergence data computed for the derived methods are presented in the Table 3
and Table 4. Table 3 lists data obtained for the scalar case (4.19), Table 4 for the
non-linear case (4.24). All data were computed for £ = 0.1.

Computed slope values confirm Taylor series-predicted convergence rates of the
developed methods. When compared to the exact solution Q(z = 0.75) = 0.0820433
in the scalar case (¢ = 0.1) the fourth order method evidences superior performance.
Specifically, monotone and accurate results are obtained on a relatively coarse mesh.
A tenfold mesh refinement would be required for the second order method to produce
comparable results. This seemingly insignificant ”third digit” observation will become
extremely important in costly real-life computations.

Solution evolution for Case problem 1 for ¢ = 0.001 is shown in Figure 7.7 with
number of nodes Nnode . Presented are numerical solutions computed using fourth
order and second order methods. While the high order formulation developed via
the perturbed equation approach differs from that obtained via the undetermined
coefficients analysis of Chapter 3, the high order solution trends remain unchanged
and can be directly compared to the results shown in Figure 7.1.

Results computed for the Burger’s equation case are shown in Figure 7.8 for

¢ = 0.001. The fourth order accurate solutions are presented for various discretiza-
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tions. Presented solutions follow general trends observed for the linear case, higlight-
ing continuity of the developed theoretical approach. All solutions are monotone with
highly accurate results obtained on sufficiently refined discretizations. Second order
method solution (not shown here) was highly divergent. In fact, continuing the it-
eration process (up to 50 iterations, not shown) does not improve the solution, but
rather exaggerates its divergent behavior.

Overall, computational results illustrate two main points. Namely, high order
methods can achieve desirable error levels on coarser meshes, and for a given mesh
high order methods produce more accurate results. The developed theoretical ap-
proach allows for exercising these advantages at no added computational cost, which
is usually associated with solution matrix bandwidth expansion of high order accurate

methods.

7.2.2. One-dimensional problems on non-uniform mesh.

Figure 7.9 presents results obtained on a strongly non-uniform mesh with geometric
progression p = 0.8 for the scalar v = 1 one-dimensional steady-state case. Compared
are third order (4.48) and Galerkin linear basis methods. As expected packing mesh
at the wall allows for resolving solution gradients on a small number of nodes for
virtually any value of viscosity parameter . Similarly to the uniform mesh results,
higher order approximation allows for monotone resolution of the boundary layer on
a coarser mesh.
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Since exact location of the boundary layer is required for efficient utilization of
non-uniform discretizations, Figures 7.10 and 7.11 present results obtained on /lo-
cally uniform meshes. In that, solution domain is subdivided into several uniformly
discretized subdomains. Those potentially containing sharp discontinuities and/or
boundary layers are then packed with nodes, while the rest are treated with coarse
mesh. This approach does not require the exact knowledge of trouble-spot locations,
just some general prediction based on the physics of the problem at hand. Figure 7.10
compares the results computed for the linear case with the fourth order and Galerkin
linear basis methods. Locally non-uniform meshing at the nodes connecting adjacent
subdomains is handled via third (4.48) and first (4.36) order methods respectively.
Figure 7.11 shows the results obtained with the fourth order method (4.17) for the
Burgers equation case (4.24). Here n, m and [ represent the number of nodes in each
of the solution subdomains. Here again the fourth order method produces excellent

monotone results on coarse meshes for all tested values of the viscocity parameter ¢.

7.2.3. Two-dimensional steady-state problems.

Uniform mesh refinement results confirming predicted convergence rates of the devel-
oped fourth order method are shown in Table 5.
All data were computed at the center node of the solution domain z = 0.5,y = 0.5.

For the purpose of establishing convergence rate of the method the linear problem
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(4.66) with the exact boundary conditions

q(1,1)=1 q(0,y) = q(x,0) =0 (7.10)
es —1 es —1

q(z,1) = ——— q(l,y)=— (7.11)
e — 1 e — 1

was considered in the mesh refinement study.

Numerical results are shown in Figures 7.12, 7.13. Figure 7.12 compares solutions
to the linear problem computed on uniform meshes of different density for € = 0.005,
while Figure 7.13 shows results for the non-linear problem (4.18) obtained for various
values of the viscosity parameter £ on a uniform 31x31 node mesh. In both cases the

boundary conditions (7.11) were replaced with the adiabatic conditions

Oq(x,1) _ 9q4(1,y)
on Oon

=0 (7.12)

Solutions of the linear problem (4.16) using the fourth order method developed
via "perturbed PDE” approach closely follow the trends obtained earlier with the
fourth order method resulted from the undetermined coefficients analysis. One must
again note that both theoretical approaches result in distinctly different stencil coeffi-
cients, while retaining the same theoretically predicted fourth order convergence rate
and efficient nine-node implementation of lower order two-dimensional constructions.
Presented numerical results thus confirm the earlier findings. In that, the fourth
order method yields monotone results on all discretizations. An inaccurate, overdi-
fused solution on a coarse 11x11 grid is significantly improved after a modest mesh
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refinement (Figure 7.12b). Further mesh refinement produces an excellent solution
on a 51x51 node mesh. Companion Galerkin bilinear basis results were presented in
earlier sections and were shown to remain oscillatory for all considered meshes.

The computational results shown in Figure 7.13 demonstrate the algorithm ap-
plicability to non-linear steady-state problems. Here, a good initial approximation in
the Newton algorithm allows for sustaining excellent monotone solutions and sharp

gradient resolution for a broad range of the viscosity parameter ¢.
7.2.4. Two-dimensional unsteady problems.

To investigate the accuracy of the developed fourth order spatial approximation in
two dimensions, the problem of a Gaussian hill translating with a uniform velocity
u = ﬁi + ﬁj and spreading isotropically with diffusivity ¢ is considered. The

analytical solution has the form (Donea, 1984)

q(r,t) = %emp (—ﬁ(r — 79 — ut)g) (7.13)

where o(t) = oo(1+2¢t/02)/2. The width of the hill at the initial time ¢ = 0 is set to
oo = 0.07 and solution is time-iterated on a uniform 26 by 26 node mesh until time
t = 0.5 is reached. Viscosity parameter was set to ¢ = 0.005. The perturbed PDE

(4.93) reduces to

Ntu Atv Nte Nte
n+1 n+1 n+1 n+1 n+1
Q" + TQI + TQy - TQM - Tny
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Figure 7.14 shows the initial and final analytical distributions. Figure 7.15 depicts
computational results obtained for different values of the Courant number. Compared
are the fourth order (4.93) and second order accurate spatial methods.

The use of the higher order spatial approximation allowed for reducing the os-
cillatory dispersion error for all considered values of Courant number by eliminating
higher order error terms, which results in more accurate solutions. The developed
theory was shown to be time/space complete with unsteady perturbed PDE forms
reducing to those of the steady-state case via temporal terms reduction. Both second
and fourth order spacial implementations required the same computational effort with

more accurate results being obtained at no added cost.
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7.2.5. Two-dimensional hyperbolic problems.

The problem of the Gaussian hill distribution probagation with a uniform constant
velocity along the solution domain diagonal was considered. The perturbed PDE

(4.101) reduces to

Atu h2 At 1
n+1 n+1 n+1 n+1 n+1 —
@ Q 2 <3AtQ 3AtQ )
Atu Atv At (1 1
n __ n _ n n n 1
@ =5~ 5@+ 5 <3At CRIEYY yy) (7.15)

Figure 7.16 shows hill distribution on a uniform 31 by 31 node mesh at time ¢ = 0
and that after 10 time iterations with Courant number set to 0.1 using the developed
fourth order space accurate method. The presented computational result demon-
strates a rather unfortunate theoretical consistency. In that, order of the method
increase does not result in accurate solutions for hyperbolic problems requiring other

optimization approaches.

7.3 Non-linear equation systems.

7.3.1 Flows in a converging-diverging nozzle.

To confirm predicted convergence rates of the developed fourth order method (6.18-
6.20), the model problem (6.2) was modified to avoid potential difficulties resulting
from the stationary shock wave in the diverging part of the nozzle. Hence, only the
converging portion of the nozzle with the corresponding Dirichlet boundary conditions
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was considered in the convergence study. Convergence data for the flow velocity
computed at the node x = 0.25 is presented in Table 6.

Obtained convergence slopes confirm the design order of the method. Unfortu-
nately, when applied to the model problem, the numerical solution is divergent for
both methods. This is easily explained by the presence of the normal shock, whose
resolution cannot be improved by increasing the order of the method. This leads one
to look for ways of adapting the designed theoretical procedure to solve the problem
at hand.

Towards this goal diffusive terms of the form

0?p 0%u 0?%e

€503 —€53) 5 (7.16)
were added to their respective equations in both methods. Approximation of these
terms was carried out in a manner consistent with (1.1) and no additional modi-
fications were made to the developed fourth order system (6.18-6.20). As a result
its approximation order was reduced to that of the second order system. Viscosity
parameter € was varied, in an attempt to make the diffused solution assymptotically
approach solution of the original system (6.2). Numerical results obtained for both
methods are presented in Figure 7.17. All solutions were computed on a 101 node
uniform mesh. Exact analytical solution is shown with a solid line, and numerical
solution is represented by nodal (circle) symbols. The fourth order method results

were computed for € = 0.02 and the second order method results were computed for
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e = 0.0008.

The fourth order method solution is clearly unacceptable, and while the second
order method by comparison seems to produce a somewhat better looking solution,
it is still greatly overdiffused and quite modest oscillations can be seen behind the
shock. While one might argue that a uniformly fourth order method could remedy
the situation, all attempts to design one directly following the theoretical procedure
developed herein did not succeed, due to the lack of symmetry in the partial derivative
groups, which was the direct result of adding the diffusive terms. For the uniformly
fourth order approximation to be achieved, it is therefore necessary to search for some
other ideas for implementing this strategy.

Introduction of the substitution (6.23) outlined in Chapter 6 results in improved
solution properties to be illustrated below. To confirm predicted convergence rates
of the developed fourth order method (6.38), the model problem was again modified
to include only the converging portion of the nozzle. Convergence data for the flow
velocity computed at the node x = 0.25 for € = 0.1 is presented in Table 7.

Computational results obtained for both methods for various values of viscosity
parameter £ are shown in Figures 7.18 and 7.19. The solid lines indicates the exact
analytical solution, while circles denote the computed nodal numerical solution.

The developed formulation allows for designing a uniformly fourth order approxi-

mation while introducing a stabilizing diffusion mechanism into the original equation
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system. As a result, both second and fourth order methods provide excellent resolu-
tion of the stationary shock wave in the diverging part of the nozzle. Both methods
have a significant problem at the nozzle-throat sonic point, and the fourth order
method proves to be somewhat less inaccurate. In agreement with the computational
results obtained for the advection-diffusion equation, the fourth order method solu-
tion is monotone, unlike that of the second order method which develops oscillations
for small values of the viscocity parameter, Figure 7.19. As expected, the smaller the
value of the viscosity parameter e, the closer the numerical solution follows that calcu-
lated analytically. This observation makes monotonicity of the fourth order solution
even more attractive. Both methods become divergent for ¢ < 0.0004.

Numerical solution is further improved via spatial filtering (6.39) algorithm, with
the results shown in Figure 7.20. Maximum amount of diffusion a = —0.49 was
used in this case. Note, being more accurate to begin with, the fourth order solution
requires a smaller amount of additional diffusion.

Time-dependent formulation (6.48) allows one to investigate a genuinly transient
physical problem. Computational results are shown in Figure 7.21, with the solid
line representing the exact analytical steady-state solution, and symbols representing
that obtained numerically. Compared are the second and fourth order spatial approx-
imation formulations (6.52), (6.61). In both cases, time integration is performed via

the second order trapezoidal rule algorithm. Viscosity parameter is set to ¢ = 0.0008
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with solutions diverging for smaller values. CFL number was set to 0.3 and spatial
filtering was performed after every time step to promote solution monotonicity.

Employing higher order spatial discretization allows for computing more accurate
solution, which is in an excellent agreement with theory. Higher order accuracy results
in a better resolution of solution characteristics, while requiring smaller amounts
of additional diffusion as provided by spatial filtering. As a reminder, o ~ 0.5 in
(6.40) provides minimum amounts of diffusion, with o« ~ —0.5 corresponding to the
maximum amount. The sonic-throat point is clearly resolved and the normal shock
discontinuity is acceptably positioned on two nodes by the fourth order formulation.
In turn, the second order formulation remains oscillatory around the shock front
resolved on three nodes signaling the need for more diffusion, which would further
flatten the shock.

While higher order approximation becomes unstable for CFL>0.5, second order
method accompanied by modest amounts of spatial filtering remains stable for larger
timesteps, allowing one to quickly progress towards the steady-state solution. This
result is illustrated in Figure 7.22. Solution is computed using the second order
spatial discretization, CFL number is set to 20, viscocity parameter is 0.000001 and
steady-state solution is achieved in as little as 17 time steps. Here again, solid line
represents the exact analytical solution. While larger amounts of diffusion oo = —0.05

are needed to maintain solution monotonicity in this case, the small number of time
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steps helps to somewhat offset this problem, resulting in a perfectly acceptable two-
node shock resolution. Shock position is clearly a bit off, but if a good inexpensive
first approximation of the steady-state regime is desired, this is one way to achieve

the goal. As always, there is no free lunch.
7.3.2. Driven cavity benchmark solutions.

The driven-cavity problem is a well-known validation benchmark problem (Baker,
1983, Williams, 1993, Roy, 1994, Chaffin, 1997). The solution domain is the unit
square, with the lid defined to slide across the domain at a uniform velocity.

The high order formulation (6.83-6.86) developed for the incompressible Navier-
Stokes vorticity-streamfunction formulation was shown to incorporate the fundamen-
tals of the classic TWS analysis. The correction error terms necessary for the appro-
priate order of accuracy are combined via vector analysis to provide the § term of
the TWS formulation. The theoretical analysis results in a highly efficient dispersion
error control mechanism whose application is based on the specifics of the solution
domain discretization and physics of the problem. It is this theoretically sound con-
trol mechanism that distinguishes this development, allowing for selective application
of optimal amounts of diffusion for maximum accuracy as dictated by the high order
accuracy formulation. It is important to note that unlike TWS formulation, present
development also includes the reformulated Poisson streamfunction equation (6.84)
as an integral part of a uniformly high order accurate solution.
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Numerical results for a range of Reynolds numbers are shown in Figures 7.23, 7.24.
Compared are GWS, TWS and newly developed high order method formulations.
For a modest value of Re=1000 all solutions are of reasonable engineering quality,
with GWS vorticity solution showing some oscillatory behavior. Oscillations are
significantly reduced via TWS S-term application and are non-existent on the fourth
order method solution.

The picture changes significantly as Reynolds number is increased to 3000. As
shown in Figure 7.24, GWS and TWS solutions are unacceptably polluted by oscilla-
tions, with high order formulation providing excellent monotone solution on a rather
coarse locally-uniform mesh. This locally-uniform discretization is quantized via the
aPSE notation as X1: [33(0. 8R1.0 .02 16R1.0 .98 8R1.0 1) | and X2: [-33(0. 20R1.0
.98 12R1.0 1) |, which reads for X1: ”from 0 to 0.02 place 8 nodes with the progression
ratio of 1.0 (uniformly), from 0.02 to 0.98 uniformly place 16 nodes and finally from
0.98 to 1.0 uniformly place 8 nodes”. Similarly, notation for X2 reads: ”from 0 to
0.98 uniformly place 20 nodes, from 0.98 to 1.0 uniformly place 12 nodes”.

The numerical results illustrate a definite advantage of theoretically predicted
selective application of numerical diffusion provided by the error correction terms
over the entire solution domain. Note that packing more nodes at the boundaries
of the solution domain would result in monotone solutions for both GWS and TWS

formulations. Of course, the price one pays is the information lost on the interior of

148



the solution domain with the discretization nodes migrating to the boundaries.

Importance of considering a uniform high order formulation consisting of the per-
turbed PDEs for both vorticity and streamfunction equations in illustrated in Figures
7.25,7.26 and 7.27. Figures 7.25, 7.26 show the results obtained when the high order
formulation is only used for the vorticity equation while the streamfunction remains
(6.73). Solution is comparable to that of the TWS method in Figure 7.24. In contrast,
Figure 7.27 shows the solution computed when only the streamfunction equation is
modified with vorticity being calculated via the original equation (6.72). One may
conclude that for this particular problem class high order modification of the stream-
function equation is more significant as compared to that of the vorticity equation,
but both are required for a consistent high order formulation.

Results from the uniform mesh convergence study conducted for stream-function
variable in energy norm using both GWS and high order formulation with Re=10
and Re=100 are shown in Table 8. All solutions were time-iterated to steady-state.
Obtained convergence data indicate near-second order convergence for both methods
reflecting time-integration second order of accuracy. While the nominal order of accu-
racy in the high order formulation is reduced, the desirable performance trends of the
high order method is nevertheless preserved. This is seen from the convergence data
obtained for Re=100 on coarser (9x9 and 17x17) discretizations. Consistent with

the results reported for the model advection-diffusion problem, high order formula-
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tion achieves monotone solutions on coarser meshes resulting in higher convergence
rates and more accurate numerical results. The convergence data computed for the
high order formulation illustrates the relative importance of the terms neglected in
designing the continuous vector form of the perturbed PDE in (4.60). These terms
are of greater significance when dealing with low Reynolds number flows, resulting
in lower convergence rates. When Reynolds number increases, the convergence rate
improves due to the diminished contribution from the neglected terms.

The accuracy of the GWS, TWS and high order formulations was tested by com-
paring their respective numerical solutions to fine-mesh benchmark results established
on a 256256 mesh by Ghia et. al. (1982). Table 9 summarizes driven cavity bench-
mark data comparisons. For the purpose of obtaining near-monotone solutions for
all considered methods, uniform 33x33 node discretization was used for Re=100,
400, 1000, while the locally-uniform discretization quantized as X1: [33(0. 9R1.0 .02
14R1.0 .98 9R1.0 1)], X2: [-33(0. 18R1.0 .98 14R1.0 1)] was used for Re=3200. The
study compares the maximum values of the stream-function variable achieved over
the entire solution domain (¢,,4,) together with the values of the vorticity variable
computed at the same nodal location, as produced by the considered methods. For
consistency, the TWS [ parameter was set to 0.2 in all computations. High order
and GWS formulations yield similar results with high order method being consis-

tently more accurate. The TWS method results are overdiffused via the 3 parameter
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selection for Re=100, 400 and produce accurate results for Re=1000.

Overall, the numerical results obtained for the driven cavity benchmark problem
confirm the advantages of using the developed uniform high order formulation. It
allows for achieving monotone accurate numerical solutions on coarser discretizations
as compared to GWS and TWS methods. This preserves the high order solution
trends illustrated for the model advection-diffusion problem and provides for a better
resolution of the interior of the solution domain. The application of the correction
error terms developed herein is governed by physics of the problem and does not

require many a knob and several a switch to run the problem.
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Chapter 8

Summary and conclusions.

A new approach to designing high order accurate CFD methods has been devel-
oped and tested for a range of problem statements including compressible Euler and
incompressible Navier-Stokes equation systems. The systematic construction of pro-
gressively higher order spatial approximations is achieved via a modified equation
analysis, which allows one to determine the computational stencil coefficients appro-
priate to a desired accuracy order. The resulting high order error correction terms
are shown to be consistent with the 3 term characteristic of the TWS finite element
formulation. This confirms the expected high order of spatial accuracy in TWS con-
structions and provides a highly efficient dispersion error control mechanism whose
application is based on the specifics of the solution domain discretization and physics
of the problem.

Theoretical development utilizes fundamentals of the finite element weak state-
ment formulation, and truncation error analysis, to characterize error in the numeri-
cal solution process. It then offers a computationally inexpensive way of constructing
equation specific higher order approximations. A distinguishing desirable property
of the developed method is solution matrix bandwidth, which always remains equal
to that of the second order discretizations. This permits combining the computa-

tional efficiency of the lower order methods with superior accuracy inherent in high
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order approximations. Generality of the underlying principles is shown to provide
a natural transition of the concepts derived for one-dimensional steady-state case to
multi-dimensional and unsteady problems. The perturbed PDE analysis is further
demonstrated to be widely applicable to Navier-Stokes non-linear equation law sys-
tem, with the theoretical development yielding the continuous vector forms needed
for the appropriate error corrections.

Numerical simulations compare performance of the developed method to that of
the GWS and TWS formulations. Uniform mesh refinement convergence results con-
firm the order of truncation error for each method. High order formulation is shown
to require significantly fewer nodes to accurately resolve solution gradients for con-
vection dominated problems. Benchmark problem applications for the compressible
Euler and incompressible Navier-Stokes equations complete the manuscript. In both
cases the developed high order formulation is shown to result in more accurate solu-
tions on coarser discretizations, thus preserving the design trends illustrated for the
model advection-diffusion equation. The theoretical development is therefore com-

plete.
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(c) 4" order method, n=>5, m=25, (d) GWS, n=5, m=25 ¢ = 0.0001

e =0.0001

Figure 7.10: Linear advection-diffusion. Locally uniform mesh comparison
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(b) n=5, m=41, 1=5, ¢ = 0.00001

Figure 7.11: Burgers equation. Locally uniform mesh comparison
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Figure 7.12: Linear advection-diffusion, uniform mesh, solution dependence on

Nnode, € = 0.005
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(a) £ = 0.01 (b) & = 0.0001
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Figure 7.13: Non-linear problem, uniform mesh, solution dependence on ¢, Nnode =

31 x 31
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(b) Final distribution at time t

Figure 7.14: Unsteady advection-diffusion. Analytical distributions
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7.15: Unsteady advection-diffusion. Uniform 26x26

Figure

Solution dependence on Courant number.
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(a) Initial distribution
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(b) Final distribution

Figure 7.16: Unsteady convection. 31x31-node uniform mesh. High order solution.
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Figure 7.17: Converging-diverging nozzle flow. Steady-state. Solution comparison,

101-node uniform mesh.
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Figure 7.18: Converging-diverging nozzle flow. Steady-state. Fourth/Second order
comparison, 101-node uniform mesh, ¢ = 0.1
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Figure 7.19: Converging-diverging nozzle flow. Steady-state. Fourth/Second order

comparison, 101-node uniform mesh, ¢ = 0.0004
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Figure 7.20: Converging-diverging nozzle flow. Steady-state. Fourth order method

with spatial filtering, 101-node uniform mesh, £ = 0.0004, o = —0.49
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Figure 7.21: Converging-diverging nozzle flow. Transient problem. Fourth/Second
order comparison, ¢ = 0.0008, a = 0.4
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Figure 7.22: Converging-diverging nozzle flow. Transient problem. Accelerated sec-

ond order method, € = 0.000001, o = —0.05
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(e) 4*" order, vorticity solution (f) 4* order, velocity profile

Figure 7.23: Driven cavity benchmark solutions. Re=1000, 33x33-node uniform

mesh.

187



o harad "N‘ .
I

0.6 @\
L osg .
0.4

03

(e) 4*" order, vorticity solution (f) 4t order, velocity profile

Figure 7.24: Driven cavity benchmark solutions. Re=3000, 33x33-node locally-
uniform mesh. X1: [33(0. 8R1.0 .02 16R1.0 .98 8R1.0 1)], X2: [-33(0. 20R1.0

98 12R1.0 1)].
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(b) Velocity profile, Re=1000

Figure 7.25: Driven cavity benchmark solutions. Vorticity high order formulation.

33x33-node uniform mesh.
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(b) Velocity profile, Re=3000

Figure 7.26: Driven cavity benchmark solutions. Vorticity high order formulation.
33x33-node locally-uniform mesh. X1: [33(0. 8R1.0 .02 16R1.0 .98 8R1.0 1)], X2:

[-33(0. 20R1.0 .98 12R1.0 1)].
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(a) Vorticity solution, Re=3000
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(b) Velocity profile, Re=3000

Figure 7.27: Driven cavity benchmark solutions. Stream-function high order formu-
lation. 33x33-node locally-uniform mesh. X1: [33(0. 8R1.0 .02 16R1.0 .98 8R1.0 1)],

X2: [-33(0. 20R1.0 .98 12R1.0 1)].

191



Appendix 11
Tables
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Appendix III
Template file for the high order formulation

implementation. Driven cavity benchmark.
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Appendix IV
Model file for the high order formulation

implementation. Driven cavity benchmark.
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Appendix V
Driven cavity benchmark. Integer print-field after
40 time steps. High order formulation, Re=3000,

31x31 locally uniform mesh.
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