FSNS.1 Free-Surface Hydrostatic Fluid Mechanics

Tidal, unsteady free-surface flows described by Reynolds-averaged INS

$$DM : \nabla \cdot \mathbf{u} = 0$$

$$D\mathbf{P} : \frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} + \frac{1}{\rho_0} \frac{\partial p}{\partial x_i} - \frac{\partial}{\partial x_j} \left(v + v^t \right) \frac{\partial u_i}{\partial x_j} + \frac{\rho g}{\rho_0} \hat{\mathbf{g}}_i + \Omega_{ij} u_j = 0, \quad 1 \le i \le 2$$

$$DP_z : \frac{\partial p}{\partial z} + \rho g = 0$$

$$DE : \frac{\partial T}{\partial t} + u_j \frac{\partial T}{\partial x_j} - \frac{\partial}{\partial x_j} \left(\kappa + \kappa^t \right) \frac{\partial T}{\partial x_j} - s = 0$$

$$DM_s : \frac{\partial S}{\partial t} + u_j \frac{\partial S}{\partial x_j} - \frac{\partial}{\partial x_j} \left(k_s + k_s^t \right) \frac{\partial S}{\partial x_j} = 0$$

state : $\rho = (\alpha + 0.698 \text{ R})/\text{ R}$, $\alpha = 1780 + 11.25T - 0.07T^2 - (3.8 - 0.01T)S$ $R = 5890 + 38T - 0.375T^2 + 3S$ (mks units) S = salinity (parts/thousand)Coriolis : $\Omega_{ij} = -2\omega \sin \phi e_{ij}$, $\omega = \text{earth rotation rate}$, $\phi = \text{latitude}$ $e_{ij} = \text{cartesian alternator}$

FSNS.2 Free-Surface INS, PDE + BCs Well-Posedness

FSNS conservation principles form is ill-posed EBV

$$DP_{z} = \frac{\partial w}{\partial t} + u_{j} \frac{\partial w}{\partial x_{j}} + \cdots \text{ was discarded as higher} - \text{ order}$$
$$DM \Rightarrow \frac{\partial w}{\partial z} = -\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \text{ is not a well} - \text{ posed ODE for either } \pm \hat{\mathbf{k}} \text{ integration}$$

Well-posed resolution is to append H.O. DP_z and migrate to PPNS algorithm

$$DM^{h} \Rightarrow \mathcal{L}(\phi) = -\nabla^{2}\phi - \nabla \cdot \mathbf{u} = 0$$

$$P_{n+1}^{*} = \sum \Phi + (\theta \Delta t)^{-1} \sum_{\alpha=0}^{p} \phi^{\alpha+1}$$
in $D\mathbf{P}: \frac{1}{\rho_{0}} p \Rightarrow P^{*} + p/\rho_{0}$

$$\int DP_{z}: p = p_{atm} + \gamma g(z - z_{s})$$

Closure for turbulence is typically the *k*-ε model

$$DE': \frac{\partial k}{\partial t} + u_j \frac{\partial k}{\partial x_j} - \frac{\partial}{\partial x_j} \left((v + v^t) \frac{\partial k}{\partial x_j} \right) - \tau_{ij} \frac{\partial u_i}{\partial x_j} + \varepsilon = 0$$

$$DE'': \frac{\partial \varepsilon}{\partial t} + u_j \frac{\partial \varepsilon}{\partial x_j} - \frac{\partial}{\partial x_j} \left(C_{\varepsilon} v^t \frac{\partial \varepsilon}{\partial x_j} \right) - C_e^1 \frac{k}{\varepsilon} \tau_{ij} \frac{\partial u_i}{\partial x_j} + C_{\varepsilon}^2 \frac{\varepsilon^2}{k} = 0$$

FSNS.3 Depth-Averaged Hydrostatic Free-Surface Flows

In many instances, depth-averaged description suffices

data: $b(x_1, x_3) \Rightarrow$ bed profile (no errosion) $h(x_1, x_2, t) \Rightarrow$ flow depth $\zeta = h - h_0 \Rightarrow$ free surface elevation $h_0 =$ mean flow depth

Depth-averaged velocity definition

$$\overline{u}_i(x_1, x_2, t) \equiv \frac{1}{h} \int_{b}^{h+b} u_i(x_1, x_2, x_3, t) dx_3$$

Hydrostatic free-surface INS, depth-averaged partially-parabolic PDE system

$$DM: \mathcal{L}(h) = \frac{\partial h}{\partial t} + \frac{\partial m_j}{\partial x_j} = 0 \quad , \quad m_j \equiv h\overline{u}_j$$
$$D\mathbf{P}: \mathcal{L}(m_i) = \frac{\partial m_i}{\partial t} + \frac{\partial}{\partial x_j} \left(\overline{u}_j m_i + \frac{1}{2} gh^2 \delta_{ij} - h\tau_{ij} \right) + hg \frac{\partial b}{\partial x_i} - \tau_{ij} \frac{\partial h}{\partial x_j} + \Omega_{ij} m_j - \tau_{is} + \tau_{ib} = 0$$

FSNS.4 Depth-Averaged FS INS, Closure Models, BCs

Stress tensor τ_{ij} closure models

flowfield:
$$\tau_{ij} = (v + v^t)\overline{S}_{ij}$$
, $\overline{S}_{ij} = \frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i}$
free surface: $\tau_{is} = \frac{\gamma}{\rho} w_i (w_j w_j)^{1/2}$, w_j = wind velocity vector
bed surface: $\tau_{ib} = -g\overline{u}_i C^{-2} (\overline{u}_j \overline{u}_j)^{1/2}$, C = Chezy bed drag coefficient

Well-posedness, boundary conditions, sub-critical flow

on
$$\partial \Omega_{in}$$
 : $\overline{\mathbf{u}}(x_s, t) = \text{data}$
 $\mathbf{m} \cdot \hat{\mathbf{n}} = \text{not specifiable}$
 $\mathbf{m} \cdot \hat{\mathbf{s}} = \text{data}$
on $\partial \Omega_{out}$: $\hat{\mathbf{n}} \cdot \nabla \mathbf{m} = \mathbf{0}$
 $h = \text{data}$
on $\partial \Omega_{\text{farfield}}$: $\hat{\mathbf{n}} \cdot \nabla q = 0$
on $\partial \Omega_{\text{walls}}$: $\mathbf{m} = \mathbf{0}$
 $\hat{\mathbf{n}} \cdot \nabla h = 0$ implied

FSNS.5 Depth-Averaged FS INS, Non-Dimensionalization

Depth-averaged, free-surface INS partially-parabolic non-D PDE system

$$DM : \mathcal{L}(h) = \frac{\partial h}{\partial t} + \beta_1 \frac{\partial m_j}{\partial x_j} = 0$$

$$DP : \mathcal{L}(m_i) = \frac{\partial m_i}{\partial t} + \frac{\partial}{\partial x_j} \left(\overline{w_j} m_i - \frac{1}{\text{Re}} (1 + \text{Re}^{\,t}) S_{ij} + \frac{1}{2\text{Fr}^2} h^2 \delta_{ij} \right) + \frac{1}{\text{Fr}_b^2} h \frac{\partial b}{\partial x_i} + \frac{1}{\text{Fr}_b^2} \frac{h^2}{2} \frac{\partial \rho}{\partial x_i} + \text{Co } e_{ij} \overline{w_j} - \frac{1}{\text{Re}} (\tau_{is} - \tau_{ib}) = 0$$

$$DE' : \mathcal{L}(k) = \frac{\partial k}{\partial t} + \frac{\partial}{\partial x_j} \left(\overline{w_j} k - \frac{1}{\text{Re}} \left(\frac{1}{\text{Pr}} + \frac{\text{Re}^{\,t}}{\text{Pr}_i} \right) \frac{\partial k}{\partial x_j} \right) - \tau_{ij} \frac{\partial \overline{w_i}}{\partial x_j} + \varepsilon = 0$$

$$DE'' : \mathcal{L}(\varepsilon) = \frac{\partial \varepsilon}{\partial t} + \frac{\partial}{\partial x_j} \left(\overline{w_j} \varepsilon - \frac{1}{\text{Re}} \left(\frac{1}{\text{Pr}} + \frac{\text{C}_{\varepsilon} \text{Re}^{\,t}}{\text{Pr}^{\,t}} \right) \frac{\partial \varepsilon}{\partial x_j} \right) - C_{\varepsilon}^1 \frac{k}{\varepsilon} \tau_{ij} \frac{\partial \overline{w_i}}{\partial x_j} + C_{\varepsilon}^2 \frac{\varepsilon^2}{k} = 0$$

$$D\tau_{ij} : \mathcal{L}(\tau_{ij}) = \tau_{ij} - \frac{2}{3} k \delta_{ij} + \left(\text{Re}^{\,t}/\text{Re} \right) \left(\partial \overline{w_i} / \partial x_j + \partial \overline{w_j} / \partial x_i \right) = 0$$

reference length scales:

 $L_r =$ transverse span, $H_r =$ vertical span, $\zeta_r =$ flow depth

non-D groups:

 $\beta_{1} = \text{relative depth scale} = H_{r}/\zeta_{r}$ $\beta_{2} = \text{relative length scale} = H_{r}/L_{r}$ Fr = depth scale Froude number = $U_{r}/\sqrt{gH_{r}}$ Fr_b = length scale Froude number = $U_{r}/\sqrt{gL_{r}}$ Fr_b = densimetric Froude number = Fr/ ε_{0} , $\varepsilon_{0} = (\rho_{r} - \rho_{0})/\rho_{0}$ Co = Coriolis number = fL_{r}/U_{r} Re = Reynolds number = $U_{r}L_{r}/\upsilon$ Pr = Prandtl number = $c_{p}\upsilon/k$ Re^t = turbulent Reynolds number = $(\upsilon^{t}/\upsilon)_{dim}$

FSNS.6 Free-Surface INS, Non-Dimensional PDE System

Pressure projection free-surface hydrostatic flow PDE system

$$DM^{h}: \mathcal{L}(\phi) = -\nabla^{2}\phi - \nabla \cdot \mathbf{u} = 0$$

$$D\mathbf{P}: \mathcal{L}(u_{i}) = \frac{\partial u_{i}}{\partial t} + u_{j}\frac{\partial u_{j}}{\partial x_{j}} - \frac{1}{\operatorname{Re}}\frac{\partial}{\partial x_{j}}\left(\left(1 + \operatorname{Re}^{t}\right)\frac{\partial u_{i}}{\partial x_{j}}\right) + \frac{1}{\operatorname{Fr}_{D}^{2}}\frac{\partial\zeta}{\partial x_{i}}\left(1 - \delta_{i3}\right) + \frac{\partial(\mathrm{P}^{*} + p/\rho_{0})}{\partial x_{i}} - \operatorname{Co} e_{ij}u_{i} = 0$$

$$DE: \mathcal{L}(\Theta) = \frac{\partial\Theta}{\partial t} + u_{j}\frac{\partial\Theta}{\partial x_{j}} - \frac{1}{\operatorname{Re}}\operatorname{Pr}\frac{\partial}{\partial x_{j}}\left(\left(1 + \operatorname{Re}^{t}\right)\frac{\partial\Theta}{\partial x_{j}}\right) - s_{\Theta} = 0$$

$$DM_{s}: \mathcal{L}(S) = \frac{\partial S}{\partial t} + u_{j}\frac{\partial S}{\partial x_{j}} - \frac{1}{\operatorname{Re}}\operatorname{Sc}\frac{\partial}{\partial x_{j}}\left(\left(1 + \operatorname{Re}^{t}\right)\frac{\partial S}{\partial x_{j}}\right) = 0$$

$$DE': \mathcal{L}(k) = \frac{\partial k}{\partial t} + u_{j}\frac{\partial k}{\partial x_{j}} - \frac{1}{\operatorname{Re}}\left(\frac{\partial}{\partial x_{j}}\left(\frac{1}{\operatorname{Pr}} + \frac{\operatorname{Re}^{t}}{\operatorname{Pr}^{t}}\right)\frac{\partial k}{\partial x_{j}}\right) - \tau_{ij}\frac{\partial u_{i}}{\partial x_{j}} + \varepsilon = 0$$

$$DE'': \mathcal{L}(\varepsilon) = \frac{\partial\varepsilon}{\partial t} + u_{j}\frac{\partial\varepsilon}{\partial x_{j}} - \frac{1}{\operatorname{Re}}\left(\frac{\partial}{\partial x_{j}}\left(\frac{1}{\operatorname{Pr}} + \operatorname{C}_{\varepsilon}\frac{\operatorname{Re}^{t}}{\operatorname{Pr}^{t}}\right)\frac{\partial\varepsilon}{\partial x_{j}}\right) - \operatorname{C}_{\varepsilon}^{1}\frac{k}{\varepsilon}\tau_{ij}\frac{\partial u_{i}}{\partial x_{j}} + \operatorname{C}_{\varepsilon}^{2}\frac{\varepsilon^{2}}{k} = 0$$

closure :
$$\mathbf{P}^* = \sum \Phi + (\theta \Delta t)^{-1} \sum_{\alpha=0}^{p} \phi^{\alpha+1}$$

 $p = p_{atm} + \gamma g (z - z_s)$

comment : reduces to PPNS statement sans "genuine " $\mathcal{L}(p)$!

FSNS.7 Divergence Form for Depth-Averaged FS INS

Sole new conservation law statement is depth-averaged DM + D**P**

state variable :
$$q(x_i, t) = \{h, m_1, m_2, k, \varepsilon, \tau_{ij}\}^T$$

ivergence form : $\mathcal{L}(q) = \frac{\partial q}{\partial t} + \frac{\partial}{\partial x_j} (f_j - f_j^v) - s = 0$
flux vectors : $f_j = \begin{cases} \frac{\beta_1 m_i}{h} + \frac{1}{2 \operatorname{Fr}^2} h^2 \delta_{ij} \\ m_j \varepsilon / h \end{cases}$, $f_j^v = \begin{cases} \frac{0}{\frac{1}{\operatorname{Re}} (1 + \operatorname{Re}^t) S_{ij}}{\frac{1}{\operatorname{Re}} \operatorname{Pr} (1 + \operatorname{Re}^t) \frac{\partial k}{\partial x_j}} \\ \frac{1}{\operatorname{Re}} \operatorname{Pr} (1 + \operatorname{Re}^t) \frac{\partial \varepsilon}{\partial x_j} \end{cases}$
data : $\overline{u}_j \equiv m_j / h$
 $s = \{0, f_i(q, b, \rho, \overline{u}_i, \tau_{ib,s}), f_{k,\varepsilon}(\tau_{ij}\overline{u}_i)\}^T$
 $\operatorname{Re}^t = (v^t / v)_{\operatorname{dim}}$
 $S_{ij} = \frac{\partial m_i}{\partial x_j} + \frac{\partial m_j}{\partial x_i}$

FSNS.8 GWS^{*h*} + θ **TS for Depth-Averaged FS INS**

Approximation:

$$q(\mathbf{x},t) \approx q^{N}(\mathbf{x},t) = \sum_{\alpha=1}^{N} \Psi_{\alpha}(\mathbf{x})Q_{\alpha}(t)$$

$$GWS^{N} = \int_{\Omega} \Psi_{\beta}(\mathbf{x})\mathcal{L}(q^{N})d\tau \equiv 0, \quad \forall \beta$$

$$= \int_{\Omega} \Psi_{\beta}\left[\frac{\partial q^{N}}{\partial t} + \frac{\partial}{\partial x_{j}}\left(f_{j} - f_{j}^{\nu}\right)^{N} - s\right]d\tau$$

$$= \int_{\Omega} \Psi_{\beta}\left(\frac{\partial q^{N}}{\partial t} - s\right)d\tau - \int_{\Omega}\frac{\partial \Psi_{\beta}}{\partial x_{j}}\left(f_{j} - f_{j}^{\nu}\right)^{N}d\tau + \oint_{\partial\Omega} \Psi_{\beta}\left(f_{j} - f_{j}^{\nu}\right)^{N}\hat{\mathbf{n}}_{j}d\sigma$$

$$= [MASS]\frac{d\{Q\}}{dt} + \{RES\} = \{0\}$$

$$GWS^{N} + \theta TS \Rightarrow \{FQ\} = [MASS]\{\Delta Q\} + \Delta t\{RES\}_{\Omega} = \{0\}$$

Finite element implementation:

$$q^{N}(\mathbf{x},t) \equiv q^{h} = \bigcup_{e} q_{e}(\mathbf{x},t), \quad q_{e}(\mathbf{x},t) \equiv \{N_{k}(\zeta,\eta)\}^{T} \{Q(t)\}_{e}$$

$$GWS^{h} + \theta TS \Longrightarrow \{FQ\} = S_{e} \{FQ\}_{e} = \{0\}$$

$$\{FQ\}_{e} = [B200]_{e} \{QP - QN\}_{e} - \Delta t ([B2J0]_{e} \{FJ - FVJ\}_{e}$$

$$+ [A200]_{e} \{FJ - FVJ\}_{e} \hat{\mathbf{n}}_{j} - \{b(data)\}_{e})_{\theta}$$

FSNS.9 Depth-Averaged Hyperbolic PDE Verification Problems

Hyperbolic PDE forms for critical flow verifications, n = 1, $f^{\nu} = 0$

Hyperbolic divergence form

Primitive variable form

$$DM : \mathcal{L}(h) = \frac{\partial h}{\partial t} + \frac{\partial}{\partial x} (m) = 0, \ m = h\overline{u}$$
$$DM : \mathcal{L}(h) = \frac{\partial h}{\partial t} + \overline{u} \frac{\partial h}{\partial x} + h \frac{\partial \overline{u}}{\partial x} = 0$$
$$DP_x : \mathcal{L}(m) = \frac{\partial m}{\partial t} + \frac{\partial}{\partial x} \left(\frac{m^2}{h} - \frac{\mathrm{Fr}^2}{2} h^2 \right) = 0$$
$$DP_x : \mathcal{L}(\overline{u}) = \frac{\partial \overline{u}}{\partial t} + \overline{u} \frac{\partial \overline{u}}{\partial x} - \mathrm{Fr} \frac{\partial h}{\partial x} = 0$$

Modified PDEs for TWS^h application require flux vector jacobians

$$f \Rightarrow \begin{cases} m \\ m^2/h - \frac{1}{2} \operatorname{Fr}^2 h^2 \end{cases}$$
$$[A] = \begin{bmatrix} 0 & , & 1 \\ -\left(\frac{m}{h}\right)^2 - \operatorname{Fr}^2 h & , & 2\frac{m}{h} \end{bmatrix}$$
$$[AA] = \begin{bmatrix} -\overline{u}^2 - \operatorname{Fr}^2 h & , & 2\overline{u} \\ -2\overline{u}^3 - 2\operatorname{Fr}\overline{u}h & , & 3\overline{u}^2 - \operatorname{Fr}^2 h \end{bmatrix}$$

$$f \Rightarrow \begin{cases} \overline{u}h \\ \frac{1}{2}\overline{u}^2 - Frh \end{cases}$$
$$[A] = \begin{bmatrix} \overline{u} & , & 0 \\ -Fr & , & \overline{u} \end{bmatrix}$$
$$[AA] = \begin{bmatrix} \overline{u}\overline{u} & , & 0 \\ -2Fr\overline{u} & , & \overline{u}\overline{u} \end{bmatrix}$$

FSNS.10 TWS^h + θ TS for TS-Modified n = 1 Hyperbolic FSNS

Modified hyperbolic divergence form for primitive form β -term

$$DM : \mathcal{L}^{m}(h) = \frac{\partial h}{\partial t} + \frac{\partial}{\partial x} \left(m - \frac{\beta \Delta t}{2} \overline{u} \overline{u} \frac{\partial h}{\partial x} \right) = 0$$
$$DP_{x} : \mathcal{L}^{m}(m) = \frac{\partial m}{\partial t} + \frac{\partial}{\partial x} \left(\overline{u} m - \frac{\mathrm{Fr}^{2}}{2} h^{2} + \beta \Delta t \mathrm{Fr} \overline{u} \frac{\partial h}{\partial x} - \frac{\beta \Delta t}{2} \overline{u} \overline{u} \frac{\partial m}{\partial x} \right) = 0$$

 $TWS^{h} + \theta TS$ template pseudo-code

$${\rm FH}_{e} = ()() {\rm HP-HN}$$

 $+(-\Delta t)() \{ \}(0)[A210]\{M\}_{\theta} + (\Delta t)() \{ \}()[ONE]\{M \cdot \hat{\mathbf{n}}\}_{\theta}$

 $+(1/2\beta_{h}\Delta t^{2})(){\overline{UU}}(-1)[A3011]{H}_{\theta}$

 $\{FM\}_{e} = ()() \{ \}(1)[A200]\{MP - MN\}$

 $+(-\beta_{m}Fr\Delta t^{2})(){\overline{U}}(-1)[A3011]{H}_{\theta}$

 $+(1/2\beta_{m}\Delta t^{2})() \{\overline{UU}\}(-1)[A3011]\{M\}_{0}$

+ $(\Delta t)()$ { ()[ONE]{ $\overline{U}M \cdot \hat{n}}_{\theta}$ + $(-\Delta t, Fr^2/2)()$ { ()[ONE]{ H^2 }_{\theta}

+ $(-\Delta t)()$ { \overline{U} }(0)[A3010]{M}_{θ} + (Δt , Fr²/2)(){H}(0)[A3010]{H}_{θ}

 $[JMH]_{e} = (\theta \Delta t)() \{M\}(0)[A3010][M/HH] + (\theta \Delta t, Fr^{2})() \{H\}(0)[A3010][]$ + $(\theta \Delta t)() \{\}()[ONE][\pm (M/H)^{2}] + (-\theta \Delta t, Fr^{2})() \{\}()[ONE][H]$ + $(-\beta_{m}Fr\theta \Delta t^{2})() \{\overline{U}\}(-1)[A3011][]$

+ $(-\theta\Delta t)()$ { \overline{U} }(0)[A3010][]+ $(-\theta\Delta t)()$ {M}(0)[A3010][1/H] + $(-\theta\Delta t)()$ {}()[ONE][2M / H · $\hat{\mathbf{n}}$]+ $(1/2\beta_m\theta\Delta t^2)()$ { \overline{UU} }(-1)[A3011][]

 $[JMM]_e = ()() \{ \}(1)[A200][]$

+ $(\theta\beta_h\Delta t^2)()$ {H}(-1)[A3110][M/HH]

 $[JHM]_e = (-\theta \Delta t)() \{ \}(0)[A210][] + (\theta \Delta t)() \{ \}()[ONE][\pm 1]$

 $[JHH]_{e} = ()() \{ \}(1)[A200][] + (1/2\beta_{m}\theta\Delta t^{2})() \{\overline{UU}\}(-1)[A3011][]]$

template pseudo-code for q-Newton

Newton jacobian

$$[JAC]_{e} = \begin{bmatrix} JHH , JHM \\ JMH , JMM \end{bmatrix}_{e}$$

FSNS.11 Depth-Averaged TWS^{*h*} + θ TS, Newton Template, *n* = 1

FSNS.12 Verification, Depth-Averaged Flows Over a Bed Profile, *n* = 1

Analytical solution =
$$f(h_{in}, Fr_{in})$$

sub - critical flow : $Fr_{in} = 0.3$ BCs : $\overline{u}_{in} = data$ $h_{out} = data$ $\frac{\partial q}{\partial x} \cong 0$ elsewhere

super - critical flow :
$$Fr_{in} = 2.0$$

BCs : m_{in} , $h_{in} = data$
 $\frac{\partial q}{\partial x}\Big|_{out} \approx 0$

Comparison solutions, TWS^{h} , k = 1 (mks units)

solution	Fr _{in}	ΔFr	Δh	$\Delta \overline{u}$	β_q
analytical	0.3	0.123	-0.210	0.347	
TWS^{h}	0.3	0.124	-0.215	0.348	(0.3, 0.3)
analytical	2.0		0.02	-0.82	
TWS^{h}	2.0		0.02	-0.80	(0.3, 0.3)

FSNS.13 Verification, Depth-Averaged Flow Hydraulic Jump, *n* = 1

FSNS.14 Verification, TWS^h+θTS, Free-Surface Flow On Bed Profile

Free surface flow PPNS validation, laminar flow over bed profile

inflow BCs: $\mathbf{u}_1(y) = \mathbf{u}_{in}, h = h_{in}, \operatorname{Fr}_{in} = 0.478$ outflow BCs: $\hat{\mathbf{n}} \cdot \nabla q = 0$ bed BCs: u = 0 = v = wfree – surface: h = h (depth – averaged solution), $\mathbf{u} \cdot \hat{\mathbf{n}} = 0$

TWS^{*h*} + θ TS solution, steady-state, $\beta_q = \{0.1, 0.1, 0, 0\}$

FSNS.15 Turbulent Depth-Averaged Free-Surface Flow TWS^{*h*} + θ TS

Partially-parabolic conservation PDE system given on FSNS.5

TWS^h β – stability approximation uses $A_j A_k \approx [\overline{u}_i \overline{u}_j]$ hence: TWS^h + θ TS = S_e {WS}_e = {0} {FQ}_e = [B200]_e {QP – QN}_e + Δt {RES(Q, \overline{u} , Re, Re^t, Fr,...)}_{θ}

Template pseudo-code essence summary

 $\{FH\}_{e} = ()()\{ \}(0;1)[B200]\{\Delta H\}$ + (-\theta \Delta t, \beta_{1})(){ }(EKI;0)[B20k]\{MI\}_{0} + (\theta \Delta t, \beta_{h} \Delta t)(){\overline{U}I \overline{U}J}(EKI, ELI;-1)[B30KL]{H} }

 $\{FMI\}_{e} = ()() \{ \}(0;1)[B200] \{\Delta MI\} + (-\Delta t)() \{\overline{U}J\}(EKJ;0)[B30K0] \{MI\}_{\theta} + (\Delta t, Fr^{2})() \{H\}(EKI;0)[B30K0] \{H\}_{\theta} + \{b(Re^{t}, \overline{U}, b, \rho, Co, \tau_{is}, \tau_{ib}, \beta_{m})\}_{\theta}$

FSNS.16 Application: **TWS**^{*h*} + θ **TS**, **Depth-Averaged** Channel Flow

Channel specifications

length/width/depth = $40/3/8 \pm 4m$ $\Delta h \Big|_{\rm IC} = 0.3m$ on L

BCs: $\overline{u}_{1in} = 2.5$ m/s, slug profile, $\overline{u}_2 = 0$, *h* floats TKE \Rightarrow log-law on $250 \le y^+ \le 600$ data: $\beta_q = 0.1(0, 1, 1, 1, 1)$, Fr = 0.1, C_z = 10, $\theta = 0.5$

Geometry perspective

TWS^{*h***}** steady turbulent flow solution:

Tidal flow simulation about cartesian and tear-drop surface penetration islands

domain span : $\pm 10^4$ meters tidal cycle BCs : $h(t) = \text{data on } \partial \Omega_{\text{out}}$ $u_1(t) = \text{data on } \partial \Omega_{\text{in}}$ Reynolds Nos : Re = 10^5 / m, Re^t = 0 Froude : $-0.2 \le \text{Fr} \le 0.2$ Courant No : C ≤ 84 Tidal elevation : $\Delta \zeta \Rightarrow \pm 0.1m$ TWS beta : $\beta_a = 0.2\{0, 1, 1\}$

Mesh resolution study, cartesian island

Ω^h	$\Delta x(x)$	$\Delta x(y)$	$\Delta y(x)$	$\Delta y(y)$	Comments
33×33	40	40	42	36	base
43×55	40	20	42	20	tangential resolution
43×55	3	20	3	20	normal resolution
59×37	3×6	20	3×6	20	uniform normal
					resolution, half-domain

Simulation graphics (aPSE page)

FSNS.18 Mesh Adequacy Assessment Via Color Graphics

CFD data interpretation employs high performance color graphics

color "diamonds" $\Leftrightarrow \Omega^h$ resolution inadequate!

Onset high tide, $\Omega^h = 33^2$

Onset slack tide

Reverse slack tide

Tangential refinement, $\Omega^h = 43 \times 55$

Normal refinement, $\Omega^h = 43 \times 55$

FSNS.19 Mesh Adequacy Assessment Via Color Graphics, Cont'd

Half-cartesian island, "double" mesh refinement, $\Omega^h = 59 \times 37$

Onset tidal cycle, surface elevation on streaklines, t = 10,900s, 13,400s, 17,500s, 21,600s

FSNS.20 Depth-Averaged TWS^h + θ TS, Unsteady Tidal Simulation

Tidal flow over sea bed excavation, onset flow at 45°

domain span : ± 3000 meters excavation depth : 20m sidewall angle : 45° TWS^h beta : $\beta_q = 0.2\{1, 1, 1\}$ tidal variation : $\Delta \zeta \Rightarrow \pm 0.02m$ Froude : $-0.11 \le Fr \le 0.11$ Courant No : $C \le 80$

Bed topology on h(0)

Extremum variations, $\Omega^h = 33^2$ non-uniform

Vertical flux, $m_2 = u_2 h$

Free-surface, ζ

Froude No.

FSNS.21 Free-Surface TWS^h + θ TS, Bed Excavation Flowfields

Non-tidal turbulent free-surface flow over a bed excavation, PPNS algorithm

excavation depths: 6.5, 13, 26 meters onset steady flow: Fr = 0.1, $h_{in} = 20$ m domain span: 100×1100 m

Nearfield velocity on Reynolds τ_{12}

FSNS.22 Summary: Free-Surface Hydrostatic Flows

Tidal, unsteady free-surface flows characterized by Re-averaged INS

hydrostatic: $DP_z \Rightarrow \partial p / \partial z + \rho g = 0$ depth – averaged: $DM \Rightarrow \partial h / \partial t + \nabla \cdot \mathbf{m} = 0$

TWS^{*h*} + θ **TS** algorithms developed for both forms

hydrostatic: add higher order $D\mathbf{P}_z$ and employ PPNS theory depth – averaged: partially – parabolic PDE requires BC attention $Fr_{in} < 1: \mathbf{m} \cdot \hat{\mathbf{n}}|_{in}$ cannot be specified $Fr_{in} > 1: h, \mathbf{m}|_{in}$ required data

Computational experiments confirm $TWS^h + \theta TS$ robustness

time-accurate unsteady capabilities $TWS^h \beta$ -stability is phase selective verification and benchmark problems illustrated