INS.1 Incompressible Navier-Stokes, CFD-NHT

Fluid-thermal-structural system design uses "CFD with NHT"

for Reynolds-averaged, turbulent, unsteady incompressible flow

$$DM: \quad \nabla \cdot \mathbf{u} = 0$$

$$\mathbf{DP}: \qquad \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} + \mathbf{E} \mathbf{u} \nabla p - \nabla \cdot \left(\mathbf{R} e^{-1} + v^{t} \right) \nabla \mathbf{u} + \frac{\mathbf{Gr}}{\mathbf{R} e^{2}} \Theta \hat{\mathbf{g}} = \mathbf{0}$$

DE:
$$\frac{\partial \Theta}{\partial t} + \mathbf{u} \cdot \nabla \Theta - \nabla \cdot \left(\operatorname{Pe}^{-1} + \operatorname{Pr}^{-1} v^{t} \right) \nabla \Theta - s_{\Theta} = \mathbf{0}$$

$$DE(k): \frac{\partial k}{\partial t} + \mathbf{u} \cdot \nabla k - \nabla \cdot \left(\operatorname{Pe}^{-1} + v^{t} / \operatorname{Pr}^{t} \right) \nabla k + \mathbf{T} \nabla \mathbf{u} - \varepsilon = \mathbf{0}$$

$$DE(\varepsilon): \frac{\partial \varepsilon}{\partial t} + \mathbf{u} \cdot \nabla \varepsilon - \nabla \cdot \left(C_{\varepsilon} v^{t} / Pr^{t} \right) \nabla \varepsilon + C_{\varepsilon}^{1} \mathbf{T} \frac{\varepsilon}{k} \nabla \mathbf{u} - C_{\varepsilon}^{2} \varepsilon^{2} / k = \mathbf{0}$$

where:

non-D parameters are familiar

T is Reynolds stress tensor

DM acts as differential constraint

 \Rightarrow no differential expression for pressure p

INS.2 Incompressible N-S, Well-Posedness

Consider unsteady isothermal laminar NS

DM: $\nabla \cdot \mathbf{u} = 0$

DP: $\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} + \operatorname{Eu} \nabla p - \operatorname{Re}^{-1} \nabla^2 \mathbf{u} = 0$ $\Rightarrow 4 \text{ PDEs on } \mathbf{u}, \text{ none on } p \text{ !}$

DM acts as a differential constraint on solutions to DP

CFD approaches to enforce constraint include

vector field theory:

DM guarantees $\mathbf{u} = \nabla \times \mathbf{\Psi}$

 $\nabla \times \mathbf{DP}$ eliminates pressure appearance

pressure projection:

 $\|\nabla^h \cdot \mathbf{u}^h\| \Rightarrow \varepsilon > 0$, iteratively

pseudo-compressibility:

 $DM \Rightarrow L(p) = \beta^{-1} p_t + \nabla \cdot \mathbf{u} = 0$

free-surface hydrodynamics:

 $DM \Rightarrow L(h) = h_t + \nabla \cdot h\mathbf{u} = 0$

INS.3 Taxonomy of INS Algorithms for DM

Continuity	Method	Origins	Issues/
Enforcement			Detractions
	Vorticity	Fromm (1963, FD)	Practical for 2D only,
	stramfunction	Baker (1973, FE)	vorticity BC at walls
Exact	Vorticity	Aziz and Helhums (1967, FD)	BCs for vector
	vector potential		potential, vorticity BC
with vorticity	Vorticity/vector	Aregbesola and Burley (1977, FD)	6 DOF/node in 3D
·	scalar potentials		vorticity BC
	Vorticity velocity	Fasel (1976, FD)	6 DOF/node in 3D
		Deams et al. (1979, FD)	vorticity BC
		Wong & Baker (2001, 3D FE)	
Exact	a-P Direct	Ladyzhenskaya (1969, FE)	Ill-conditioned
	(mixed finite elements)	Babuska (1973, FE)	numerical diffusion
		Brezzi (1974, FE)	
Inexact	Penalty	Temam (1965, FE)	Ill-conditioned
Algebraic		Zienkiewicz and	reduced integration
		Godbole (1975, FE)	
Inexact	Pseudo-	Chorin (1967, FD)	Steady-state only
Initial value	compressibility	Carter (1990, FE)	numerical diffusion

INS.4 Taxonomy of INS Algorithms for DM

Continuity Enforcement	Method	Origins	Issues/ Detractions
Inexact Boundary Value Problem	MAC/SMAC	Harlow and Welch (1965, FD)	Staggered mesh velocity BC
	Projection	Chorine (1968, FD) Temam (1969, FD)	Staggered or non-staggered meshes BC implementation
	SIMPLE, SIMPLER SIMPLEC, SIMPLEST	Patankar and Spalding (1972, FD)	Staggered mesh, slow convergence, BC implementation
	Velocity correction	Schneider et al. (19xx, FE)	Equal-order finite element, explicit with lumped mass matrix
	PISO	Issa (1985, FD)	2-step predictor/corrector, staggered mesh, BC, pressure
	Operator splitting	Glowinski (1985, FE)	Decouples non-linearity from incompressibility
	Continuity constraint	Williams and Baker (1999, FE)	Implicit, equal-order, time accurate, finite element Galerkin weak
			statement