PNS.1 Aerodynamics, Constitutive Closure Models

Conservation principles, compressible flow

$$D M : \frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{V} = 0$$

$$D \mathbf{P} : \frac{\partial \rho \mathbf{V}}{\partial t} + \nabla \cdot \rho \mathbf{V} = \rho \mathbf{g} + \nabla \mathbf{T}$$

$$D E : \frac{\partial \rho e}{\partial t} + \nabla \cdot (\rho e + p) \mathbf{V} = s - \nabla \cdot \mathbf{q}$$

Constitutive closure models \Rightarrow Navier-Stokes equations

Stokes viscosity

$$\mathbf{T} \equiv -p \mathbf{I} + \boldsymbol{\mu} \cdot \nabla \mathbf{V} - \frac{2 \lambda}{3} (\nabla \cdot \mathbf{V}) \delta$$

Fourier conduction

 $\mathbf{q} = -k\nabla T$

perfect gas, internal energy

$$p = \rho R T$$
, $e = c_v T$, $c = \sqrt{\gamma R T}$

where: μ , λ , k, R, c_{ν} are fluid properties (data)

PNS.2 Compressible Navier-Stokes, Aerodynamics Simplification

Characteristics of aerodynamic flows

aerodynamic shapes flowfield is uni-directional farfield is undistributed large Reynolds number, Re/L > 10⁶ viscous effects strictly local

Conservation principle simplifications

farfield described by steady potential flow \Rightarrow **u** = $-\nabla \phi$

$$DM: \nabla \cdot \rho(\mathbf{u}) \Rightarrow -\nabla \cdot \rho(\nabla \phi) = 0$$

$$\int D\mathbf{P} \cdot d\Psi \Rightarrow p(\mathbf{x}) = p_{\infty} - \frac{1}{2}\rho \mathbf{u} \cdot \mathbf{u}$$

Bernoulli pressure

nearfield DM + DP can be Re-ordered \Rightarrow boundary layer form of N-S

PNS.3 Aerodynamics – Potential Flow

Inviscid, irrotational steady flow

subsonic – transonic – supersonic: Mach = M =
$$\sqrt{U_{\infty}^{2}/\gamma RT}$$

M < 0.3 : DM = $\nabla \cdot \mathbf{u} \Rightarrow -\nabla^{2}\phi = 0$
M ≈ 1 : DM = $\nabla \cdot \rho \mathbf{u} \Rightarrow (1 - M_{\infty}^{2})\frac{\partial^{2}\phi}{\partial x^{2}} + \frac{\partial^{2}\phi}{\partial y^{2}} - M_{\infty}^{2}\left[\frac{1+\gamma}{U_{\infty}}\right]\frac{\partial\phi}{\partial x}\frac{\partial^{2}\phi}{\partial x^{2}} = 0$
M > 1: DM = $\nabla \cdot \rho \mathbf{u} \Rightarrow (1 - M_{x}^{2})\frac{\partial^{2}\phi}{\partial x^{2}} + (1 + M_{y}^{2})\frac{\partial^{2}\phi}{\partial y^{2}} - \frac{2}{c^{2}}\frac{\partial\phi}{\partial x}\frac{\partial\phi}{\partial y}\frac{\partial^{2}\phi}{\partial x\partial y} =$

0

PNS.4 Aerodynamics, Weak Interaction Theory

Farfield, subsonic-transonic potential flow assumption

DM:

$$L(\phi) = (1 - M_{\infty}^{2})\frac{\partial^{2}\phi}{\partial x^{2}} + \frac{\partial^{2}\phi}{\partial y^{2}} + \frac{\partial^{2}\phi}{\partial z^{2}} = 0$$

$$\ell(\iota) = \hat{\mathbf{n}} \cdot \nabla\phi - U_{\infty}\hat{\mathbf{i}} \cdot \hat{\mathbf{n}} = 0$$
DE:

$$p(\mathbf{x}_{\delta}) = p_{\infty} - \rho\nabla\phi \cdot \nabla\phi / 2$$

Nearfield, boundary layers wash aerosurfaces

PNS.5 Aerodynamics, Boundary Layer Flow

Reynolds ordering of Navier-Stokes, subsonic, $n = 2$										
	knov	wn s	scales	:	$U_{\infty}, L, \delta(x)$					
	non-	-D o	rderin	ng:	$u/\mathrm{U}_{\infty} \approx O(1)$, $x/L \approx$	<i>O</i> (1), δ/	′L<< 0(1)	
	D <i>M</i>	:	$ abla \cdot \mathbf{u}$	$=\frac{\partial u}{\partial x}$	$+\frac{\partial v}{\partial v}=0$					
				$\Rightarrow O($	$1/1) + O(v/\delta) =$	= 0, hen	$ce, v / U_c$	$_{\infty} pprox O(\delta)$		
	D P :		$\mathbf{u}\cdot abla$	u + E	$u \nabla p - \operatorname{Re}^{-1} \nabla$	$u^2 \mathbf{u} = 0$				
		$\hat{\mathbf{i}}$ \Rightarrow	<i>O</i> (1·1/1	1) + O(d)	$(\delta \cdot 1/\delta) + \operatorname{Eu} O(p)$	$(1) - \mathrm{Re}^{-1}$	<i>O</i> (1/1·1+1	$(\delta \cdot \delta) = 0$		
			keeping	<i>O</i> (1) =	$\Rightarrow \operatorname{Eu} \partial p / \partial x \Rightarrow O$	$(1), Re^{-1}$	$\Rightarrow O(\delta^2),$	$\frac{\partial^2 u}{\partial x^2} \Rightarrow O(\delta^2)$	²)	
		$\hat{\mathbf{j}}$ \Rightarrow	<i>O</i> (1·δ/ everyth	(1) + O(0) ing $O(0)$	$(\delta \cdot \delta / \delta) + \text{Eu } O(\beta)$ $(\delta) \Rightarrow \text{hence Eu } \delta$	$(p / \delta) - \text{Re}^{2}$ $(p / \partial y = O)$	$^{-1}O(\delta/1.1)$ (δ), then	$1 + \delta / \delta \cdot \delta) = p(x, y) \Longrightarrow p$	= 0 p(x)	
	reca	ıll:		Re = Eu =	$\rho_{\infty}U_{\infty}L/\mu_{\infty}$ $p_{\infty}/\rho_{\infty}U_{\infty}^{2}$					

PNS.6 Parabolic Navier-Stokes, Boundary Layer Form

Summary, Reynolds ordering of N-S, n = 2, steady subsonic BL

- DP_y: pressure through BL is constant $\Rightarrow P(x)$ from potential farfield DM
- DP_x: $\partial^2 u / \partial x^2$ is $O(\delta^2)$, hence negligible, Re = $O(\delta^{-2}) >> 1$ \Rightarrow parabolic PDE on $x \ge x_0$, $0 \le y \le \delta(x)$
- DM: $\partial v / \partial y = \partial u / \partial x$, hence initial value on $0 < y \le \delta(x)$

Laminar - thermal subsonic BL non-D conservation form

$$L(u) = u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + Eu \frac{dP_I}{dx} - \frac{1}{Re} \frac{\partial^2 u}{\partial y^2} + \frac{Gr}{Re^2} \Theta \hat{\mathbf{g}} \cdot \hat{\mathbf{i}} = 0$$

$$L(\Theta) = u \frac{\partial \Theta}{\partial x} + v \frac{\partial \Theta}{\partial y} - \frac{Ec}{Re} \left(\frac{\partial u}{\partial y}\right)^2 - \frac{1}{Pe} \frac{\partial^2 \Theta}{\partial y^2} = 0$$

$$L(v) = \frac{\partial v}{\partial y} + \frac{\partial u}{\partial x} = 0$$

$$BCs: \qquad u(x, y = 0) = 0 = v(x, y = 0)$$

$$\frac{\partial u}{\partial y}\Big|_{x, y/\delta \ge 1} = 0, \quad \Theta(x, 0) = \Theta_{wall}, \quad \frac{\partial \Theta}{\partial y}$$

PNS.7 GWS^{*h*} + θ **TS for Laminar-Thermal BL**

$L(u,\Theta)$ are each of parabolic PDE + BC + IC form

$$L(q) = u \frac{\partial q}{\partial x} - \frac{1}{Pa} \frac{\partial^2 q}{\partial y^2} - s(q) = 0$$

Approximation : $q(x, y) \approx q^N(x, y) \equiv \sum_a^N \Psi_a(y) Q_a(x)$

$$GWS^N \Rightarrow [MASS(u^N)] \{Q\}' + \{RES\} = \{0\}$$

$$GWS^N + \theta TS \Rightarrow \{FQ\} = [MASS(u^N)] \{Q - QN\} + \Delta x \{RES(Q)\}_{\theta=0.5} = \{0\}$$

$$GWS^h + \theta TS \Rightarrow S_e \{FQ\}_e \equiv \{0\}$$

$$\{FQ\}_e = \int_{\Omega_e} \left[\{\overline{U1}\}^T \{N\} \{N\} \{N\}^T dy \{\Delta Q\}_e + (\Delta x/2) \{U2\}_e^T \{N\} \{N\} \frac{d\{N\}^T}{dy} \{Q\}_e + \frac{\Delta x}{2Pa} \frac{d\{N\}}{dy} \frac{d\{N\}^T}{dy} \{Q\}_e - (\Delta x/2) \{N\} s_e(q) \right]_{\theta} dy + BCs$$

GWS^h + **HTS** template pseudo-code

 $\{FQ\}_e = (\)(\)\{\overline{U1}\}(1)[A3000]\{QP-QN\}$

+ $(\Delta x/2)()(U2P)(0)[A3001]{QP} + (\Delta x/2)(){U2N}(0)[A3001]{QN}$

+ $(\Delta x/2, Pa^{-1})()$ } (-1)[A211]{QP} + $(\Delta x/2, Pa^{-1})()$ } (-1)[A211]{QN}

+ $(\Delta x)()$ } (1)[A200]{ $\overline{\text{DPDX}}$ } + $(\Delta x, \text{Gr/Re}^2 \hat{\mathbf{g}}.\hat{\mathbf{i}})()$ } (1)[A200]{ \overline{T} }

+ $(-\Delta x/2, \text{Ec}/\text{Re})()$ {U1P}(-1)[A3101]{U1P} + $(-\Delta x/2, \text{Ec}/\text{Re})()$ {U1N}(-1)[A3101]{U1N}

PNS.8 GWS^{*h*} + θ TS BL {F(*Q*)} Completion

$\{F(Q)\}_e$ statement completion for DM

solve:
$$DM = \frac{\partial v}{\partial y} + \frac{\partial u}{\partial x} = 0 \text{ at } x_{n+1}$$

TS:
$$v_{j+1} = v_j + \Delta y \frac{\partial v}{\partial y}\Big|_{j+1/2} + O(\Delta y^3)$$
$$\frac{\partial v}{\partial y} = -\frac{\partial u}{\partial x} \Rightarrow \frac{-d\{u\}}{dx}\Big|_{x_{n+1}}$$
$$\frac{d\{u\}}{dx} = a\{U1\}^{n+1} + b\{U1\}^n + c\{U1\}^{n-1} + O(\Delta x^3)$$
$$w_{n+1} = \frac{1}{2} \int_{x_{n+1}}^{x_{n+1}} \frac{d\{u\}}{dx} = a\{U1\}^{n+1} + b\{U1\}^{n+1} + c\{U1\}^{n-1} + O(\Delta x^3)$$
homogenous:
$$V_{j+1}^{n+1} - V_{j}^{n+1} + \ell_e d\{U1\}^{n+1} / dx + O(\Delta x^3) = 0$$
hence:
$$\{FU2\}_e = \begin{bmatrix} 0 & 0 \\ -1 & -1 \end{bmatrix} \{U2\}_e + \frac{1}{2} \ell_e \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \{aU1^{n+1} + bU1^n + cU1^{n-1}\}_e$$

GWS^h template:
$$\{FU2\}_e = (-)(-)\{-1\} \{0\} [AV2] = \frac{1}{2} \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$$

PNS.9 GWS^{*h*} + θ TS BL Algorithm Jacobian

Newton Jacobian formed via $\partial \{FQ\}_e / \partial \{Q\}_e$

 $[JAC]_{e} = \begin{bmatrix} JUU, JUV, JUT \\ JVU, JVV, 0 \\ JTU, JTV, JTT \end{bmatrix}_{e}$

aPSE template pseudo-code

 $\begin{bmatrix} JUU \end{bmatrix}_{e} = ()() \{U1\}(1)[A3000][] + (\Delta x/2)() \{U2\}(0)[A3001][] \\ + (\Delta x/2, Re^{-1})() \{ \}(-1)[A211][] \\ \begin{bmatrix} JUV \end{bmatrix}_{e} = (\Delta x/2)() \{U1\}(0)[A3100][] \\ \begin{bmatrix} JUT \end{bmatrix}_{e} = (\Delta x/2, Gr / Re^{2}, \hat{g} \cdot \hat{i})() \{ \}(1)[A200] [] \\ \begin{bmatrix} JVU \end{bmatrix}_{e} = (a, 1/2)() \{ \}(1)[AV2][] \\ \begin{bmatrix} JVU \end{bmatrix}_{e} = (a, 1/2)() \{ \}(0)[AV1][] \\ \begin{bmatrix} JTU \end{bmatrix}_{e} = (1/2)() \{ \}(0)[AV1][] \\ \begin{bmatrix} JTU \end{bmatrix}_{e} = (1/2)() \{ T\}(1)[A3000][] + (\Delta x, Ec/Re)() \{U1\}(-1)[A3101][] \\ \begin{bmatrix} JTV \end{bmatrix}_{e} = (\Delta x/2)() \{T\}(0)[A3100][] \\ \end{bmatrix}$

PNS.10 FVS^{*h*} + θ TS BL Algorithm

FVS^h BL algorithm modifications to GWS^h template

$$V = \sum_{\Omega^{h}} \int_{\Omega_{v}} L(u^{h}) dy = \sum_{\Omega^{h}} \int_{\Omega_{v}} \left(\frac{\partial u^{2}}{\partial x} + P' + \frac{\operatorname{Gr}}{\operatorname{Re}^{2}} \Theta \hat{\mathbf{g}} \cdot \hat{\mathbf{i}} \right)^{h} dy + \oint_{\partial \Omega_{v}} \left(uv - \frac{1}{\operatorname{Re}} \frac{\partial u}{\partial y} \right)^{h} \cdot \hat{\mathbf{n}} d\sigma$$

$$\int_{\Omega_{v}} (\cdot) dy \Rightarrow 2\ell_{e}U_{j}U'_{j} + \ell_{e}P' + \ell_{e} \frac{\operatorname{Gr}}{\operatorname{Re}^{2}}T_{j}\hat{\mathbf{g}} \cdot \hat{\mathbf{i}}$$

$$\int_{\partial \Omega_{v}} (\cdot) \cdot \hat{\mathbf{n}} dy = \sum_{\partial \Omega_{v}=1}^{2} (\cdot) \cdot \hat{\mathbf{n}} = \left[(VU)_{j+1/2} - (VU)_{j-1/2} \right] - \frac{1}{\ell_{e}\operatorname{Re}} (U_{j+1/2} - U_{j-1/2})$$

$$= \frac{1}{2}V_{j}(U_{j+1} - U_{j-1}) - \frac{1}{\ell_{e}\operatorname{Re}} \left(U_{j-1} - 2U_{j} + U_{j+1} \right) \text{ replacing } j \pm 1/2$$

$FVS^h + \theta TS$ template pseudo-code, $\{N_1\}$ equivalent

 $\{FVU\}_{e} = ()(U)\{ \}(1)[A200F]\{UP - UN\} \\ + (\Delta x/2)(V)\{ \}(0)[A201]\{UP + UN\} \\ + (\Delta x/2, Re^{-1})()\{ \}(-1)[A211]\{UP + UN\} \\ + (\Delta x/2)()\{ \}(1)[A200]\{\overline{DPDX}\} \\ + (\Delta x/2, Gr/Re^{2}, \hat{\mathbf{g}} \cdot \hat{\mathbf{i}})()\{ \}(1)[A200F]\{\overline{T}\} \}$

PNS.11 GWS^{*h*}, FVS^{*h*} + θ TS for BL, Accuracy/Convergence

Asymptotic error estimate, GWS^h optimality verification

	theory:	$e^{h}(n\Delta$	$x)\Big _{E} \le C\ell_{e}^{2k} \ \text{data}\ _{L^{2}}^{2} + C_{x}$	-		
	data:	$\left\ \text{data} \right\ _{L^2}^2$	$= \int_{\Omega} (\mathrm{d}p / \mathrm{d}x)^2 \mathrm{d}y = f(x)$		7 *	
		$\left\ U(x_0) \right\ $	$f_{\rm H1}^2 = \int_{\Omega} (U_0)^2 dy + \int_{\Omega} (dU_0 / dy)^2 dy$	$\mathrm{d}y)^2\mathrm{d}y \Longrightarrow \mathrm{consta}$	nt!	Nodal Locations For: IO Linear Elements X 20 Linear Elements
	IC:	\Rightarrow mu	st be mesh independe	nt		Ţ 1220
Co	nvergen	ce, opt	imality (Ch.6, 1983	3)	Kannan	territorio - E
GW	$\mathbf{VS}^h, \{N_k\}, 1$	$\leq k \leq 3$	GWS^h optimality, $\{N_1\}$	Regular non-u	niform Ω^h refine	ement, $f(x) > 0$, $f(x) < 0$
NORMALIZED ERROR IN ENERGY NORM E	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} 10^{-1} \\ 10^{-2} \\ 10^{-2} \\ 10^{-3} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	UNITIZED ERROR IN ENERGY NORM IN ENERGY NORM IN ENERGY NORM IN ENERGY IN 10-2 Nonuniform Discretization	$\begin{array}{c} GWS^{h} \\ \leftarrow \\ FVS^{h} \\ \rightarrow \end{array}$	10^{0} $\frac{9}{10}$ $\frac{9}{10}$ $\frac{9}{10}$ $\frac{9}{10}$ $\frac{9}{10}$ $\frac{9}{10}$ $\frac{9}{10}$ $\frac{1}{10}$

Z 10⁻⁵ 0.625 1.25 2.5 5.0 10.0 20.0 DISCRETIZATION REFINEMENT a max(%)

20.0

1/160 1/80 1/40 1/20 1/10 1/5 DISCRETIZATION REFINEMENT 1/M

1/5

1/160 1/80 1/40 1/20 1/10 1/5

DISCRETIZATION REFINEMENT 1/M

10-5 0.625 1.25 2.5 5.0 10.0 20.0 DISCRETIZATION REFINEMENT A. (%)

PNS.12 GWS^{*h*}, FVS^{*h*} + θ TS for BL, Accuracy Nuances

$\{U(n\Delta x)\}$ profiles for Re

Solution mesh adaptation

GWS^h optimality

Thermal BLs

GWS^{*h*} convergence

GWS^h verification

PNS.13 Boundary Layer Flow, Turbulence

BL form of NS valid only for Re >> 1

aircraft	Mach	U_{∞} (m/s)	L (m)	Re	Re/L
commuter	0.3	125	10	3E07	<i>O</i> (E06)
wide body	0.9	250	40	2E08	<i>O</i> (E06)

BL flows will be turbulent (!)

resolution of BL velocity components

 $u(\mathbf{x},t) \equiv \overline{u}(\mathbf{x}) + u'(\mathbf{x},t)$

time-averaging

$$\overline{u}(\mathbf{x}) \equiv \lim_{T \to \infty} \frac{1}{T} \int_{t_0}^{t_0 + T} u(\mathbf{x}, \tau) d\tau$$
$$\overline{u'} = 0$$

PNS.14 Turbulent Boundary Layer, Reynolds Stress

Time averaging of BL DM and DP

- DM: both terms linear, hence $\nabla \cdot \overline{\mathbf{u}} = 0 = \nabla \cdot \mathbf{u'}$
- DP_x : non-linear convection term generates a new contribution

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \Rightarrow \frac{\partial}{\partial x} (uu) + \frac{\partial}{\partial y} (vv)$$
 via DM

$$\frac{\overline{uu}}{\overline{vu}} \Rightarrow \frac{\overline{u}}{\overline{u}} \frac{\overline{u}}{\overline{u}} + \frac{\overline{u'u'}}{\overline{u'u'}}$$

$$\Rightarrow \overline{v} \frac{\overline{u}}{\overline{u}} + \frac{\overline{v'u'}}{\overline{v'u'}}$$

Reynolds ordering confirms that $O(\overline{u'u'}) \approx O(\overline{v'u'}) \approx O(\delta)$

$$\frac{\partial}{\partial x} \left(\overline{u} \ \overline{u} + \overline{u'u'} \right) \Rightarrow O\left(1 \cdot 1 / 1 + \delta / 1 \right)$$
$$\frac{\partial}{\partial y} \left(\overline{v} \ \overline{u} + \overline{v'u'} \right) \Rightarrow O\left(\delta \cdot 1 / \delta + \delta / \delta \right)$$

hence: Reynolds normal stress u'u' contribution negligible Reynolds shear stress $\overline{v'u'}$ contribution must be included

PNS.15 Boundary Layer Flow, Turbulence Modeling

Reynolds kinematic shear stress modeled after Stokes

$$\overline{v'u'} \equiv -v^t \frac{\partial \overline{u}}{\partial y}$$
, $v^t \equiv \text{turbulent "eddy" viscosity, units } (\mu/\rho_{\infty} = v) \Rightarrow (L^2/t)$

Prandtl mixing length model

$$\upsilon^{t} \equiv \left(\omega \ell_{m}\right)^{2} \left| \frac{\partial \overline{u}}{\partial y} \right| f \Rightarrow \left(L^{2} \right) \left(1 / t \right)$$

where: $\ell_m \equiv \text{mixing length}$ $\omega, f = \text{near wall, freestream damping}$

Turbulent kinetic energy-dissipation model

$$\upsilon^{t} \equiv C_{\mu}k^{2} / \varepsilon \Longrightarrow (L / t)^{4}(t^{3} / L^{2})$$

where:

$$k = \frac{1}{2} \left(\overline{\mathbf{u'} \cdot \mathbf{u'}} \right) = \frac{1}{2} \left(\overline{\mathbf{u'} \cdot \mathbf{u'}} + \overline{\mathbf{v'} \mathbf{v'}} + \overline{\mathbf{w'} \mathbf{w'}} \right)$$
$$\varepsilon = \frac{2 \upsilon}{3} \left(\frac{\partial u'_{i}}{\partial x_{k}} \frac{\partial u'_{i}}{\partial x_{j}} \right) \delta_{jk}$$

and: L(k) and $L(\varepsilon)$ BL forms augment BL DM & DP_x

0

 $1 y/\delta$

PNS.16 GWS^{*h*} + θ TS, Turbulent BL, MLT Closure

Turbulent BL conservation law form, time-averaged q(x,y), MLT

$$D\mathbf{P}_{x}: \ \mathbf{L}\left(\overline{u}\right) = \overline{u} \frac{\partial \overline{u}}{\partial x} + \overline{v} \frac{\partial \overline{u}}{\partial y} - \frac{1}{\mathrm{Re}} \frac{\partial}{\partial y} (1 + \mathrm{Re}^{t}) \frac{\partial \overline{u}}{\partial y} + \frac{\mathrm{dP}^{t}}{\mathrm{d}x} + \frac{\mathrm{Gr}}{\mathrm{Re}^{2}} \overline{\Theta} \hat{\mathbf{g}} \cdot \hat{\mathbf{i}} = 0$$

$$D\Theta: \ \mathbf{L}\left(\overline{\Theta}\right) = \overline{u} \frac{\partial \overline{\Theta}}{\partial x} + \overline{v} \frac{\partial \overline{\Theta}}{\partial y} - \frac{1}{\mathrm{Re}} \frac{\partial}{\partial y} \left(\frac{1}{\mathrm{Pr}} + \frac{\mathrm{Re}^{t}}{\mathrm{Pr}^{t}}\right) \frac{\partial \overline{\Theta}}{\partial y} - \frac{\mathrm{Ec}}{\mathrm{Re}} \left(\frac{\partial \overline{u}}{\partial y}\right)^{2} = 0$$

$$DM: \ \mathbf{L}\left(\overline{v}\right) = \frac{\partial \overline{v}}{\partial y} + \frac{\partial \overline{u}}{\partial x} = 0$$

$$D\mathbf{P}_{y}: \ \mathbf{L}\left(\overline{p}\right) = \frac{\partial}{\partial y} \left(\rho_{0} P^{t} + \overline{v'v'}\right) = 0$$

where : $\operatorname{Re}^{t} \equiv (\upsilon^{t}/\upsilon)_{\operatorname{dim}} = \operatorname{turbulent} \operatorname{Reynolds} \operatorname{number}$ $\upsilon^{t} \equiv (\omega \ell_{m})^{2} \left| \frac{\partial \overline{u}}{\partial y} \right| f = \operatorname{MLT} \operatorname{eddy} \operatorname{viscosity}$ $\omega = 1 - \exp(-y/A) = \operatorname{van} \operatorname{Driest} \operatorname{damping}, A \approx 25$ $\ell_{m} = \operatorname{Prandtl} \operatorname{mixing} \operatorname{length} = \begin{cases} \kappa y, \ on \ 0 \le y/\delta \le \lambda/\kappa \\ \lambda\delta, \ on \ \lambda/\kappa < y/\delta \le 1 \end{cases} \kappa = 0.405$ $\lambda = 0.09$ $f = [1 + 5.5(y/\delta)^{6}]^{-1} = \operatorname{Klebanoff} \operatorname{damping}$ $\operatorname{Pr}^{t} \cong \operatorname{Pr} \text{ for turbulent} \operatorname{Prandtl} \operatorname{number} (\operatorname{usually})$ $\overline{v'v'} = \operatorname{Reynolds} \text{ transverse normal stress}$

PNS.17 GWS^h + θ TS Template for Turbulent BL, MLT Closure

Laminar template pseudo-code modifications are modest

for
$$\{FU\}_{e}$$
, $\{FT\}_{e}$: $(Pa^{-1})\cdots[A211] \Rightarrow (\Delta x/2, Pa^{-1})() \{RET\}(-1)[A3011]\{Q\}$
Reynolds shear sress : $L(uv) = uv + v \partial u/\partial y = 0$
 $GWS^{h}(L(uv)) = S_{e} \{WS\}_{e} = \{0\}$
 $\{WS\}_{e} = ()() \{ \}(1)[A200] \{TXY\}$
 $+ (Re^{-1})() \{RET\}(0)[A3001] \{U1\}$

quasi-Newton jacobian, p^{th} iteration

solve for $\{\delta U1, \delta U2, \delta T\}^{p+1} \Rightarrow \{Q\}^{p+1}$ update : $\upsilon^t = (\omega \ell_m)^2 |\partial U1/\partial y| f \Rightarrow \{\text{RET}\}^{p+1}$ direct solve : using these data $\Rightarrow \{TXY\}^{p+1}$

compute energy norms for $\{Q\}_{n+1}^{p+1}$ converged

PNS.18 GWS^{*h*} + θ TS Performance, Turbulent BL, MLT Closure

Accuracy, convergence, *regular* non-uniform Ω^h refinement

theory:
$$|e^{h}(n\Delta x)|_{E} \leq Ch_{e}^{2k} ||data||_{H^{k-1}}^{2} + C_{x}\Delta x^{3} ||U_{0}||_{H^{1}}^{2}$$

norm: $|u^{h}(n\Delta x)|_{E} = \frac{1}{2} \int_{\Omega} \upsilon' \left(\frac{\partial u^{h}}{\partial y}\right)^{2} dy = \frac{1}{2} \sum_{\Omega^{k}} \int_{\Omega_{k}} (\cdot) dy$
 $= \frac{1}{2 \operatorname{Re}} \sum_{e}^{M} \{U\}_{e}^{T} \{\operatorname{RET}\}_{e}^{T} [A3011] \{U\}_{e}$
IC, M = 80 laminar Ω^{h} progressions $Convergence$ Optimality
 $\frac{1}{2 \sqrt{\frac{1}{2}} \sqrt$

DISCRETIZATION REFINEMENT A. MOX (%)

DISCRETIZATION REFINEMENT

25.0

DISCRETIZATION REFINEMENT A Max (%)

50.0

PNS.19 GWS^h + θ TS Validation, Turbulent BL, MLT Closure

Boundary layer theory employs many integral "norms"

displacement thickness : $\delta^*(x) \equiv \int_0^{\delta} (1 - u(x, y) / U^I(x)) dy$ momentum thickness : $\theta(x) \equiv \int_0^{\delta} [u(x, y) / U^I(x)](1 - u(x, y) / U^I(x)) dy$ shape factor : $H \equiv \delta^* / \theta$ skin friction : $C_f \equiv \tau_w / \rho^I U^I U^I / 2$ Ludwig – Tillman : $C_f \equiv 0.246(10) \exp(-0.678H) \operatorname{Re}_{\theta} \exp(-0.268)$

Validation, Bradshaw I-2400 experiment

PNS.20 Turbulent Boundary Layer, TKE Closure

Turbulent kinetic energy-isotropic dissipation closure model

eddy viscosity:

$$v' \equiv C_{\mu}k^{2}/\varepsilon, \ C_{\mu} = 0.09$$

$$k \equiv \frac{1}{2}\left(\overline{u'\cdot u'}\right) = \frac{1}{2}\left(\overline{u'u'} + \overline{v'v'} + \overline{w'w'}\right) \quad \varepsilon \equiv \frac{2v}{3}\left(\frac{\overline{\partial u'_{i}}}{\partial x_{k}}\frac{\overline{\partial u'_{i}}}{\partial x_{j}}\right)\delta_{jk}$$

 $L(k, \varepsilon)$ conservation PDEs, non-D BL form

$$L(k) = u \frac{\partial k}{\partial x} + v \frac{\partial k}{\partial y} - \frac{1}{Pe} \frac{\partial}{\partial y} \left(1 + \frac{Re^{t}}{C_{k}} \right) \frac{\partial k}{\partial y} - \tau_{12} \frac{\partial u}{\partial y} + \varepsilon = 0$$

$$L(\varepsilon) = u \frac{\partial \varepsilon}{\partial x} + v \frac{\partial \varepsilon}{\partial y} - \frac{1}{Pe} \frac{\partial}{\partial y} \left(1 + \frac{Re^{t}}{C_{\varepsilon}} \right) \frac{\partial \varepsilon}{\partial y} - C_{\varepsilon}^{1} \frac{\varepsilon}{k} \tau_{12} \frac{\partial u}{\partial y} + C_{\varepsilon}^{2} \frac{\varepsilon}{k} \varepsilon = 0$$

$$L(\tau_{12}) = \tau_{12} + v^{t} \frac{\partial u}{\partial y} = \tau_{12} + C_{\mu} \frac{k^{2}}{\varepsilon} \frac{\partial u}{\partial y} = 0$$

TKE model adds non-linear parabolic PDE + BCs + IC pair

BCs:
$$k(x, y = 0) = 0, \ \varepsilon(x, y = 0) \Rightarrow \varepsilon_w < \infty$$

 $\frac{\partial k}{\partial y}, \frac{\partial \varepsilon}{\partial y}\Big|_{y \ge \delta(x)} = 0$
IC: $k(x_0, y) = ? = \varepsilon(x_0, y)$

PNS.21 TKE for Turbulent BL, Near-Wall Corrections

TKE closure model requires near-wall corrections

low Re^t closure model constant modifications (Lam-Bremhorst)

$$\upsilon^{t} \Rightarrow f_{\nu}C_{\mu}k^{2}/\varepsilon: f_{\nu} = (1 - \exp(-0.0165 R_{\nu}))^{2}(1 + 20.5/Re^{t})$$

$$C_{\varepsilon}^{1} \Rightarrow f^{1}C_{\varepsilon}^{1}: f_{k} = (1 + 0.05 f_{\nu}^{-1})^{3}$$

$$C_{\varepsilon}^{2} = f^{2}C_{\varepsilon}^{2}: f_{\varepsilon} = 1 - \exp(-Re^{t})^{2}$$

$$\operatorname{Re}^{t} = \upsilon^{t} / \upsilon$$
$$\operatorname{R}_{y} = k^{1/2} y / \upsilon$$

BL similarity TKE variable distributions as f (y)

$$U^{+} \equiv u / u_{\tau} = \kappa^{-1} \log(y^{+}E) + B$$
$$y^{+} \equiv u_{\tau} y / \upsilon$$

near-wall production = dissipation in L (k)

$$\Rightarrow \begin{array}{c} \upsilon^{t} = \kappa y u_{\tau} \\ k = u_{\tau}^{2} / C_{\mu} \\ \varepsilon = (\kappa y)^{-1} |u_{\tau}|^{3} \end{array}$$

 $\tau_w = \sqrt{C_{\mu}k}$

PNS.22 Turbulent Boundary Layer Similarity

PNS.23 GWS^h + θ TS Template, BL, TKE + Low Re^t

Template pseudo-code modifications ({FV}_e unchanged)

for
$$\{Q\}_e = \begin{cases} U \\ T \\ K \\ E \end{cases}$$
: $\{FQ\}_e = ()() \{\overline{U}\}(1)[A3000]\{QP - QN\} + (\Delta x/2)() \{VP, VN\}(0)[A3001]\{QP, QN\} + (\Delta x/2, Pa^{-1})() \{RET\}[A3011]\{QP, QN\} + \{b(Q)\} \end{cases}$

Source terms {b (·)} unchanged for $\{Q\} = \{U, T\}^T$, and

$$\{b(K)\}_{e} = \int_{\Omega_{e}} \{N\} (\tau_{12} \partial u_{e} / \partial y) dy + \int_{\Omega_{e}} \{N\} \varepsilon_{e} dy$$

= $(\Delta x / 2)(-) \{TXY\} (0) [A3001] \{U\} + (\Delta x / 2)(-) \{-\} (1) [A200] \{E\}$
 $\{b(E)\}_{e} = C_{\varepsilon}^{1} \int_{\Omega_{e}} \{N\} (\tau_{12} (\varepsilon / k)_{e} \partial u_{e} / \partial y) dy + C_{\varepsilon}^{2} \int_{\Omega_{e}} \{N\} (\varepsilon / k)_{e} \varepsilon_{e} dy$
= $(\Delta x / 2, \text{CE1}) (\text{FE1}) \{TXY, E / K\} (0) [A3001] \{E\}$
+ $(\Delta x / 2, \text{CE2}) (\text{FE2}) \{E / K\} (1) [A3000] \{E\}$

Reynolds shear stress template

 ${FTXY}_e = ()() { }(1)[A200]{TXY} + (Re^{-1})(FNU){RET}(0)[A3001]{U}$

PNS.24 GWS^h + θ TS TKE BL, Quasi-Newton Jacobian

Size, deeply embedded non-linearity precludes Newton

	quas jaco	i-Newton bians:	$\begin{bmatrix} JUU, & JUV, & JUT \\ JVU, & JVV, & 0 \end{bmatrix}, \begin{bmatrix} JKK, & JKE, & JKT_{xy} \\ JEK, & JEE, & JET_{yy} \end{bmatrix}$
			JTU. JTV. JTT JTK. JT E. JT T _w
S	solution	sequence:	$\{\delta U, \delta V, \delta T\}^{p+1} \text{ unchanged from laminar, MLT}$ update $\{U, V, T\}^{p+1}$ $\{\delta K, \delta E, \delta T_{xy}\}^{p+1} \text{ uses } \{U, V, T\}^{p+1}$ update $\{K, E, T\}^{p+1}$ index <i>p</i> , return to $\{\delta U, \delta V, \delta T\}^{p+1}$
scill	ating co	onvergence:	use {RETN} in {FU, FT} ^{p} use {UN, VN} in {FK, FE, FT _{xy} } ^{p}
		templates:	$[JAC]_e$ for {FU, FV, FT} are unchanged [JAC]_e for {FK, FE, FT _{xy} } fully utilizes chain rule

0

PNS.25 GWS^h + θTS TKE Closure Jacobian Coupling

Jacobian coupling for convection terms is unchanged

diffusion term:
$$L(q) \Rightarrow -\frac{1}{\text{Re}} \frac{\partial}{\partial y} \left(\frac{1}{\text{Pr}} + \frac{\text{Re}^{t}}{\text{C}_{q} \text{Pr}^{t}} \right) \frac{\partial q}{\partial y} , q = \{k, \varepsilon\}$$

$$\frac{\partial}{\partial q} (\cdot) = \frac{1}{\text{Re}} \frac{\partial}{\partial y} \left(1 + \frac{\text{Re}^{t}}{\text{C}_{q}} \right) \frac{\partial (\cdot)}{\partial y} + \frac{1}{\text{Re}} \frac{\partial}{\partial y} \left(\frac{\partial \tau_{12}^{e}}{\partial q} \right) \frac{\partial q}{\partial y}$$
$$\frac{\partial \tau_{12}}{\partial q} = \frac{\partial}{\partial q} \left(C_{\mu} f_{\nu} k^{2} / \varepsilon \right) \Rightarrow \begin{cases} 2C_{\mu} f_{\nu} k / \varepsilon = 2\tau_{12} k^{-1} \\ -C_{\mu} f_{\nu} (k / \varepsilon)^{2} = -\tau_{12} \varepsilon^{-1} \end{cases}$$

assuming $Pr^{t} \approx Pr$, hence $RePr \approx RePr^{t} = Pe$

 $[JKK]_{e} = (\Delta x/2, Pe^{-1})() \{ \}(-1)[A211][]$ + $(\Delta x/2, Pe^{-1}, C_{k}^{-1})() \{RET\}(-1)[A3011][]$ + $(\Delta x, Pe^{-1}, C_{k}^{-1})() \{K\}(-1)[A3110][RET, K^{-1}]$ + $(\Delta x)() \{U\}(0)[A3100][TXY, K^{-1}]$

PNS.26 GWS^h + θTS TKE Closure Jacobian Coupling

Continuing with jacobians

 $[JKE]_{e} = (-\Delta x/2, Pe^{-1}, C_{k}^{-1})() \{K\}(-1)[A3110][RET, E^{-1}] + (-\Delta x/2)() \{U\}(0)[A3100][TXY, E^{-1}] + (\Delta x/2)() \{ \}(1)[A200][]$

 $[JEK]_{e} = (\Delta x, Pe^{-1}, C_{\varepsilon}^{-1})() \{E\}(-1)[A3110][RET, K^{-1}]$ $+ (-\Delta x/2, C_{\varepsilon}^{1})(FE1) \{U\}(0)[A3100][TXY, E/K^{2}]$ $+ (\Delta x, C_{\varepsilon}^{1})(FE1) \{U\}(0)[A3100][TXY, (E/K)^{2}]$ $+ (-\Delta x/2, C_{\varepsilon}^{2})(FE2) \{E\}(1)[A3000][E/K^{2}]$

 $[JEE]_{e} = (\Delta x/2, Pe^{-1})() \{ \}(-1)[A211][]$ + $(\Delta x/2, Pe^{-1}, C_{\varepsilon}^{1})() \{RET\}(-1)[A3011][]$ + $(\Delta x/2, C_{\varepsilon}^{2})(FE2)\{E/K\}(1)[A3000][]$ + $(\Delta x/2, C_{\varepsilon}^{2})(FE2)\{E\}(1)[A3000][K^{-1}]$

PNS.27 GWS^h + θ **TS TKE BL, Accuracy, Validation**

Validation, Bradshaw I 2400 experiment, Re/L≈10⁵

BL integral norm evolutions

PNS.28 Aerodynamic Trailing Edge Turbulent Wake

Reynolds-ordered PNS PDE+BCs for merging BLs

Problem statement geometry

BL \Rightarrow **PNS** theory modifications

DM BCs not valid for ODE on $\{V(y)\}$ $\Rightarrow \nabla \cdot \mathbf{u} = 0$ is now a differential constraint DP_x remains as developed DP_y still $O(\delta)$, but must be included for BCs DK, DE remain as developed $\nabla \cdot DP$ yields pressure Poisson equation \Rightarrow complementary + particular solutions

BL distributions merging at TE

 $\max(\partial k / \partial y, \partial \varepsilon / \partial y) \Big|_{\partial \Omega} \Rightarrow \text{ interior to } \Omega!$ requires attention to τ_{ij}

PNS.29 GWS^{*h*} + θ TS Validation, Turbulent BL \Rightarrow TE Wake

 $BL \Rightarrow$ wake expanded orders for Reynolds stresses

$$\overline{u'u'} = \overline{C_1 k - C_2 C_4} \frac{k^3}{\epsilon^2} \left(\frac{\partial \overline{u}}{\partial y}\right)^2 - 2\overline{C_4} \frac{k^2}{\epsilon} \left(\frac{\partial \overline{u}}{\partial x}\right)$$
$$\overline{v'v'} = \overline{C_3 k - C_2 C_4} \frac{k^3}{\epsilon^2} \left(\frac{\partial \overline{u}}{\partial y}\right)^2 - 2\overline{C_4} \frac{k^2}{\epsilon} \left(\frac{\partial \overline{u}}{\partial y}\right)$$
$$\overline{w'w'} = \overline{C_3 k}$$
$$\overline{u'v'} = \overline{C_2} \frac{k^2}{\epsilon} \left(\frac{\partial \overline{u}}{\partial y}\right)$$

closure model constants, $C_{01} \approx 2.8$, $C_{01} \approx 0.45$

$$C_{1} = \frac{22 (C_{01} - 1) - 6(4C_{02} - 5)}{33 (C_{01} - 2C_{02})}$$

$$C_{2} = \frac{4(3C_{02} - 1)}{11 (C_{01} - 2C_{02})}$$

$$C_{3} = \frac{22 (C_{01} - 1) - 12 (3C_{02} - 1)}{33 (C_{01} - 2C_{02})}$$

$$C_{4} = \frac{44C_{02} - 22C_{01}C_{02} - 128C_{02} - 36C_{02}^{2} + 10}{165 (C_{01} - 2C_{02})^{2}}$$

PNS.30 GWS^{*h*} + θ TS Validation, Turbulent BL \Rightarrow TE Wake

GWS^{*h*}+ θ **TS BL comparisons, 0.90** $\leq x$ /chord \leq 0.998

GWS^{*h*}+ θ **TS PNS wake comparisons, 1.00** $\leq x$ /chord \leq 1.099

PNS.31 Unidirectional 3-D Aerodynamic Viscous Flows

3-D extensions include juncture region, ducted flows

flow geometries

PNS-ordered Reynolds stress tensor

3D PNS, Favre time-average

$$L(\overline{\rho}) = \frac{\partial}{\partial x_{j}} (\overline{\rho} \widetilde{u}_{j}) = 0$$

$$L(\overline{\rho} \widetilde{u}_{i}) = \frac{\partial}{\partial x_{j}} (\overline{\rho} \widetilde{u}_{i} \widetilde{u}_{j} + \overline{p} \delta_{ij} + \overline{\rho} \overline{u_{i}' u_{j}'} - \overline{\sigma}_{ij}) = 0$$

$$L(\overline{\rho} \widetilde{H}) = \frac{\partial}{\partial x_{j}} (\overline{\rho} \widetilde{H} \widetilde{u}_{j} + \widetilde{u}_{i} \overline{\sigma}_{ij} + \overline{\rho} \overline{H' u_{j}'} - \overline{u_{i}' \sigma_{ij}'} - \overline{g}_{j}) = 0$$

$$\frac{O(\delta)}{u_{1}^{'}u_{1}^{'}} = C_{1}k - C_{2}C_{4}\frac{k^{3}}{\varepsilon^{2}}\left[\left(\frac{\partial \widetilde{u}_{1}}{\partial x_{2}}\right)^{2} + \left(\frac{\partial \widetilde{u}_{1}}{\partial x_{3}}\right)^{2}\right] - 2C_{4}\frac{k^{2}}{\varepsilon}\left[\frac{\partial \widetilde{u}_{1}}{\partial x_{1}}\right]$$

$$\frac{O(\delta^{2})}{O(\delta^{2})}$$

$$\frac{O(\delta^{2})}{U_{1}^{'}u_{1}^{'}} = C_{1}k - C_{2}C_{4}\frac{k^{3}}{\varepsilon^{2}}\left[\frac{\partial \widetilde{u}_{1}}{\partial x_{2}}\right]^{2} - 2C_{4}\frac{k^{2}}{\varepsilon}\left[\frac{\partial \widetilde{u}_{1}}{\partial x_{2}}\right]$$

$$- 2C_{4}\frac{k^{2}}{\varepsilon}\left[\frac{\partial \widetilde{u}_{2}}{\partial x_{2}}\right]$$

$$- 2C_{4}\frac{k^{2}}{\varepsilon}\left[\frac{\partial \widetilde{u}_{2}}{\partial x_{2}}\right]$$

$$- 2C_{4}\frac{k^{2}}{\varepsilon}\left[\frac{\partial \widetilde{u}_{3}}{\partial x_{3}}\right]$$

$$- 2C_{4}\frac{k^{2}}{\varepsilon}\left[\frac{\partial \widetilde{u}_{3}}{\partial$$

$$\overline{\sigma}_{ij} = \overline{\rho \upsilon} \frac{\widetilde{S}_{ij} - (2/3)\delta_{ij}\widetilde{S}_{kk}}{\operatorname{Re}}$$
$$\overline{q}_{j} = \overline{\kappa} \frac{\partial \widetilde{H}}{\partial x_{j}}$$
$$\widetilde{S}_{ij} = \frac{\partial \widetilde{u}_{i}}{\partial x_{j}} + \frac{\partial \widetilde{u}_{j}}{\partial x_{i}}$$

PNS.32 GWS^h + θ TS 3D PNS Algorithm, Validation

3D PNS algorithm based on a pressure-projection algorithm

$$DM : \nabla^{h} \cdot \overline{\rho} \widetilde{\mathbf{u}}^{h} \approx 0 \Longrightarrow L(\phi) = -\nabla^{2} \phi - \nabla \cdot \overline{\rho} \widetilde{\mathbf{u}} = 0 + BCs$$
$$\nabla \cdot D\mathbf{P} : \nabla \cdot L(\widetilde{\mathbf{u}}) = 0 \Longrightarrow L(p) = -\nabla \cdot \overline{\rho} \nabla p + s(\overline{\rho}, \widetilde{\mathbf{u}}) = 0 + BCs$$

PNS.33 Summary, $GWS^h + \theta TS$ for Parabolic Navier-Stokes

Aerodynamic flows ⇔ weak interaction

streamline shapes flowfield is uni-directional pressure impressed from farfield large Reynolds number, $\text{Re/L} > 10^6$ viscous-turbulent effects strictly local admits parabolizing steady NS equations

$GWS^{h} + \theta TS$ algorithm performance for PNS equations

linear asymptotic convergence theory confirmed appropriate, $1 \le k \le 3$ FE bases

$$\left| e^{h}(n\Delta x) \right|_{E} \le Ch_{e}^{2k} \left\| \text{data} \right\|_{L^{2}}^{2} + C_{x}\Delta x^{3} \left\| q_{0} \right\|_{H^{1}}^{2}$$

GWS^h solution optimality verified in comparison to FVS^h options MLT & TKE turbulence closure models, including low Re^t algorithm non-linearities template defined via hypermatrices validation exercises completed, n = 2, 3non-linear algebraic Reynolds stress tensor