PPNS.1 Pressure Projection Algorithms for RaNS

Pressure projection: RaNS methods enforcing *only* DM^h

DM^{*h*}:
$$\nabla \cdot \mathbf{u} = 0 \Longrightarrow \left\| \nabla^h \cdot \mathbf{u}^h \right\| \le \varepsilon > 0$$
 iteratively

"famous" named algorithms in the class include

MAC, SMAC	– Los Alamos Nat. Lab
SIMPLE,- ER, -EC, -EST	⁻ – Imperial College, UK
PISO	– Imperial College, UK
Operator splitting	– Univ. Houston
Continuity constraint	– Univ. Tennessee

fundamental PPNS theory ingredients

measure error in ∇^h·u^h via a potential function φ^h
 employ φ^h to moderate DM^h and/or DP^h error via

 velocity correction
 pressure correction

 iterate DP^h + DM^h until ||∇^h·u^h|| ≤ ε
 determine genuine pressure field

PPNS.2 Pressure Projection INS PDE + BC System

For unsteady, laminar-thermal non-D INS in *n*-D

PDEs:

$$L(u_{i}) = \frac{\partial u_{i}}{\partial t} + u_{j} \frac{\partial u_{i}}{\partial x_{j}} - \operatorname{Re}^{-1} \nabla^{2} u_{i} + \operatorname{Eu} \frac{\partial p}{\partial x_{i}} + \frac{\operatorname{Gr}}{\operatorname{Re}^{2}} \Theta \hat{\mathbf{g}}_{i} = 0$$

$$L(\Theta) = \frac{\partial \Theta}{\partial t} + u_{j} \frac{\partial \Theta}{\partial x_{j}} - \operatorname{Pe}^{-1} \nabla^{2} \Theta - s = 0$$

$$L(\phi) = -\nabla^{2} \phi + \nabla \cdot \mathbf{u} = 0$$

$$L(p) = -\operatorname{Eu} \nabla^{2} p - \frac{\partial}{\partial x_{i}} \left(u_{j} \frac{\partial u_{i}}{\partial x_{j}} + \frac{\operatorname{Gr}}{\operatorname{Re}^{2}} \Theta \hat{\mathbf{g}}_{i} \right) = 0$$

BCs:

on $\partial \Omega_{inflow}$: u_i, Θ, p on \mathbf{x}_s usually given $\ell(\phi) = \hat{\mathbf{n}} \cdot \nabla \phi = 0$ on $\partial \Omega_{outflow}$: $\ell(q) = \hat{\mathbf{n}} \cdot \nabla (u_i, \Theta) = 0$ $\phi = 0$ $\ell(p) = \hat{\mathbf{n}} \cdot \nabla p + f(\operatorname{Re}^{-1} \nabla^2 \mathbf{u} \cdot \hat{\mathbf{n}}, \partial u_i / \partial t) = 0$ on $\partial \Omega_{walls}$: $u_i = 0 = \hat{\mathbf{n}} \cdot \nabla \phi$ $\ell(\Theta) = \hat{\mathbf{n}} \cdot \nabla \Theta + \operatorname{Nu}(\Theta - \Theta_r) = 0$ $\ell(p) = \hat{\mathbf{n}} \cdot \nabla p + f(\operatorname{Re}^{-1} \nabla^2 \mathbf{u} \cdot \hat{\mathbf{n}}) = 0$

ref. Williams & Baker, IJNMF, Part B, V.29 (1996).

PPNS.3 GWS^h + θ **TS for Unsteady PP INS**

The PPNS PDE + BCs system contains familiar expressions

for
$$q(\mathbf{x},t) \approx q^N \equiv q^h = \bigcup_e (\{N_k(\eta,\zeta)\}^T \{Q(t)\}_e), \text{ and } \{Q(t)\} \Rightarrow \{U1, U2, U3, TEM\}^T$$

 $GWS^N + \theta TS \Rightarrow \{FQ\} = [MASS] \{\Delta Q\} + \Delta t \{RES(Q)\}|_{\theta} \equiv \{0\}$
then, $GWS^N \Rightarrow GWS^h \equiv S_e \{WS\}_e = \{0\}$ and
 $\{FQ\}_e = [M200]_e \{QP - QN\}_e + \Delta t (\{UJ\}_e^T [M300J]_e \{Q\}_e + Pa^{-1}[M2KK]_e \{Q\}_e - \{b(Q, QA)\}_e + \{BCs\}_e)_{\theta}$

for
$$q_A(\mathbf{x},t) \approx q^N = q^h \dots$$
, and $\{QA\} = \{PHI, PRS\}^T$
 $GWS^N \Longrightarrow GWS^h = S_e \{WS\}_e \equiv \{0\}, \text{ and}$
 $\{FQA\}_e = Pa[M2KK]_e \{QA\}_e - \{b(Q)\}_e + \{BCs\}_e$

For matrix statement: $[JAC]{\{\delta Q\}^{p+1} = -\{FQ\}^p \text{ and } [JAC] \Rightarrow S_e[JAC]_e}$

Newton:		JUU	JUV	JUW	JUT	JUø	
		•	JVV	•	•	JVø	
	$[JAC]_e =$		•	JWW	•	JWø	
		•	•	•	JTT	0	
		ͿφU	JøV	JøW	0	Jøø	e

PPNS.4 Iteration Strategy for PPNS $GWS^h + \theta TS$ Algorithm

PPNS iteration strategy is independent of Newton choice

key formulation issu	ies: [$\mathbf{DP}^h = f(\mathbf{D}M^h \text{ via } P_{n+1}^*)$
	D	$M^{h} = f(\nabla^{h} \cdot \mathbf{u}^{h}, \phi^{h} \text{ at iteration } p+1)$
	1	$\mathbf{P}_{n+1}^* = \sum \Phi + (\Theta \Delta t)^{-1} \sum_{\alpha=0}^p \delta \phi_{n+1}^{\alpha+1}$
	1	$p_{n+1} = \operatorname{GWS}^{h}(L(p), \left \phi^{p+1}\right _{E} < \varepsilon)_{n+1}$
solution initiati	ion: IC	s for q^h are never (!) available
for $\mathbf{u} \cdot \hat{\mathbf{n}} \Big _{\partial \Omega_{\text{in}}} \mathbf{B}$	Cs: ite	wrate $D\mathbf{P}^h = f(DM^h, p_0 = 0)$
		$P_{n+1}^{*} = 0 + (\Theta \Delta t)^{-1} \sum_{\alpha=0}^{p} \delta \phi^{\alpha+1}$
	at	$\left \boldsymbol{\phi}^{p+1} \right _{E} < \varepsilon, \ \mathbf{u}^{h}(\mathbf{x}, t_{1})$ is initialized
	SO	lve $GWS^{h}(L(p)) \Rightarrow p_{1}$, index <i>n</i> , repeat iteration cycle
for $p _{\partial\Omega_{\rm in,out}}$ B	BCs: so	lve $GWS^{h}(L(p) = 0 \text{ homogenous} \Rightarrow p(\mathbf{x}, t_{0}))$
	ite	erate $\mathbf{DP}^{h} = f(\mathbf{DM}^{h}, p_{0})$
		$P_{n+1}^{*} = 0 + (\Theta \Delta t)^{-1} \sum_{\alpha=0}^{\nu} \delta \phi^{\alpha+1}$

PPNS.5 $\{FQ\}_e$ Template Essence for GWS^h + θ TS PPNS Algorithm

GWS^h + 0TS for PPNS initial-value PDEs

 $\{FQ\}_{e} = [M200]_{e} \{QP - QN\}_{e} + \Delta t [\{UJ\}_{e}^{T} [M300J]_{e} \{Q\}_{e} + Pa^{-1} [M2KK]_{e} \{Q\}_{e} - \{b(Q)\}_{e} + \{BCs\}_{e}]_{\theta}$

template essence:

 $\{FQ\}_{e} = ()() \{ \}(0;1)[M200] \{QP - QN\} + (\Delta t)() \{UJ\}(EKJ;0)[M300K] \{QP,QN\}_{\theta} + (\Delta t, Ra^{-1})()()(EIK, EJK;-1)[M2IJ] \{QP,QN\}_{\theta} - \{b(Q)\}_{\theta}$

for $\{Q\}_e \Rightarrow \{UI\}_e$:

 $\{b(UI)\}_{e} = ()()\{\{(EKI; 0)[M20K]\{PHI + SPHN\} + (\Delta t)()\{\{(EKI; 0)[M20K]\{PRESN\} + (\Delta t, Gr / Re^{2}, GDOTI)()\{\}(0; 1)[M200]\{TEMP\}_{\theta} \}$

for $\{Q\}_e \Rightarrow \{\text{TEMP}\}_e$:

 $\{b(\text{TEMP})\}_{e} = (\Delta t)() \{ \}(0; 1)[\text{M200}]\{\text{SRC}\}_{\theta} + (\Delta t, \text{Nu}, \text{Pe}^{-1})() \{ \}(0; 1)[\text{N200}]\{\text{TEMP} - \text{TREF}\}_{\theta}$

PPNS.6 $[JAC]_e$ Template Essence for $GWS^h + \theta TS$ PPNS Algorithm

The Newton jacobian for $\{QI\}$ in DP^h, I not summed

 $[JACII]_{e} \equiv \partial \{FUI\}_{e} / \partial \{UI\}_{e} = ()() \{ \}(0;1)[M200][] \\ + (\Delta t)() \{UJ\}(EKJ;0)[M300K][] \\ + (\Delta t)() \{UI\}(EKI;0)[M3K00][] \\ + (\Delta t, Re^{-1})() \{ \}(EIK, EJK;-1)[M2IJ][] \\ + (\Delta t, Re^{-1})() \{ \}(EIK, EJK;-1)[M2IJ][] \\ [JACIJ]_{e} = \partial \{FUI\} / \partial \{UJ\} \\ = (\Delta t)() \{UI\}(EJI;0)[M3J00][] \\ [JACI\phi]_{e} = ()() \{ \}(EKI;0)[M20K][] \\ [JACI\phi]_{e} = (\Delta t, Gr / Re^{2}, GDOTI)() \{ \}(0;1)[M200][]] \\ [JACI\Theta]_{e} = (\Delta t, Gr / Re^{2}, GDOTI)() \{ \}(0;1)[M200][]] \\ [JACI\Theta]_{e} = (\Delta t, Gr / Re^{2}, GDOTI)() \{ \}(0;1)[M200][]] \\ [JACI\Theta]_{e} = (\Delta t, Gr / Re^{2}, GDOTI)() \{ \}(0;1)[M200][]] \\ [JACI\Theta]_{e} = (\Delta t, Gr / Re^{2}, GDOTI)() \{ \}(0;1)[M200][]] \\ [JACI\Theta]_{e} = (\Delta t, Gr / Re^{2}, GDOTI)() \{ \}(0;1)[M200][]] \\ [JACI\Theta]_{e} = (\Delta t, Gr / Re^{2}, GDOTI)() \{ \}(0;1)[M200][]] \\ [JACI\Theta]_{e} = (\Delta t, Gr / Re^{2}, GDOTI)() \{ \}(0;1)[M200][]] \\ [JACI\Theta]_{e} = (\Delta t, Gr / Re^{2}, GDOTI)() \{ \}(0;1)[M200][]] \\ [JACI\Theta]_{e} = (\Delta t, Gr / Re^{2}, GDOTI)() \{ \}(0;1)[M200][]] \\ [JACI\Theta]_{e} = (\Delta t, Gr / Re^{2}, GDOTI)() \\ [JACI\Theta]_{e} = (\Delta t, Gr / Re^{$

TS exercise on L(q) generates a kinetic flux vector jacobian matrix

DP, **DE**:

$$L(q) = \frac{\partial q}{\partial t} + \frac{\partial}{\partial x_{j}} \left(u_{j}q - Pa^{-1} \frac{\partial q}{\partial x_{j}} \right) - s(q) = 0$$

$$\approx q_{t} + \partial f_{j} / \partial x_{j} \Rightarrow q_{t} + A_{j} \frac{\partial q}{\partial x_{j}}, \quad f_{j} \equiv u_{j}q \text{ and } A_{j} \equiv \partial f_{j} / \partial q$$
TS:

$$q^{n+1} = q^{n} + \Delta tq_{t}^{n} + 1/2\Delta t^{2}q_{u}^{n} + 1/6\Delta t^{3}q_{uu}^{n} + O(\Delta t^{4})$$

$$q_{t} = -A_{j} \frac{\partial q}{\partial x_{j}}$$

$$q_{u} = \dots = \frac{\partial}{\partial x_{j}} \left[\alpha A_{j} \frac{\partial q}{\partial t} + \beta A_{j} A_{k} \frac{\partial q}{\partial x_{k}} \right]$$

$$q_{uu} = \dots = \frac{\partial}{\partial x_{j}} \left[\gamma \frac{\partial}{\partial x_{k}} \left(A_{j} A_{k} \frac{\partial q}{\partial t} \right) + \mu \frac{\partial}{\partial x_{k}} \left(A_{j} A_{k} A_{\ell} \frac{\partial q}{\partial x_{\ell}} \right) \right]$$

Substituting into TS, taking lim (TS) $\Rightarrow \epsilon > 0$ produces

DP, **DE**:

$$L^{m}(q) = L(q) - \frac{\Delta t}{2} \frac{\partial}{\partial x_{j}} \left[\alpha A_{j} \frac{\partial q}{\partial t} + \gamma \frac{\Delta t}{3} \frac{\partial}{\partial x_{k}} \left(A_{j} A_{k} \frac{\partial q}{\partial t} \right) \right]$$

$$- \frac{\Delta t}{2} \frac{\partial}{\partial x_{j}} \left[\beta A_{j} A_{k} \frac{\partial q}{\partial x_{k}} + \mu \frac{\Delta t}{3} \frac{\partial}{\partial x_{k}} \left(A_{j} A_{k} A_{l} \frac{\partial q}{\partial x_{l}} \right) \right] = 0$$

TWS^h requires A_i , A_iA_k and $A_iA_kA_l$ be formed for INS

(i not

$$\Rightarrow \text{ for } q = \{u_{i}, \Theta\}:$$
(i not summed)
$$A_{j} \Rightarrow [A_{j}] = \begin{bmatrix} u_{j} + u_{1} & 0 \\ u_{j} + u_{2} \\ 0 & u_{j} + u_{3} \\ 0 & u_{j} \end{bmatrix} = \begin{bmatrix} u_{j} + u_{i}\delta_{ij}, & 0 \\ 0 & , & u_{j} \end{bmatrix}$$

$$[A_{j}A_{k}] = \begin{bmatrix} u_{j} + u_{i}\delta_{ij}, & 0 \\ 0 & , & u_{j} \end{bmatrix} \begin{bmatrix} u_{k} + u_{i}\delta_{ik}, & 0 \\ 0 & , & u_{k} \end{bmatrix}$$

$$= \begin{bmatrix} u_{j}u_{k} + u_{j}u_{i}\delta_{ik} + u_{k}u_{i}\delta_{ij} + u_{i}u_{i}\delta_{ij}\delta_{ik}, & 0 \\ 0 & , & u_{j}u_{k} \end{bmatrix}$$

Since [A_j] is diagonal, generates no q cross-coupling and

$$\frac{\partial}{\partial x_{j}} \left[A_{j} A_{k} \frac{\partial q}{\partial x_{k}} \right] = \frac{\partial}{\partial x_{j}} \left[u_{j} u_{k} \frac{\partial u_{i}}{\partial x_{k}} + u_{i} u_{k} \frac{\partial u_{j}}{\partial x_{k}}, \quad 0 \right]$$

PPNS.9 TWS^{*h*} + θ TS for PPNS, Alternative β -Term Forms

The TS lead β -term for $q = \{u_i\}$ has been generated many ways

balancing tensor diffusivity: $\beta \frac{\Delta t}{2} [A_j A_k] \cong \frac{\beta \Delta t}{2} [u_j u_k]$

defining local time scale $\Delta t / 2 \approx h / |\mathbf{u}_e|$ leads to

Petrov-Galerkin	$: \frac{\beta \Delta t}{2} \left[\mathbf{A}_{j} \mathbf{A}_{k} \right] \cong \beta h \left[\hat{u}_{j} u_{k} \right]$
uniform Ω^h	: $h \cong C(det_e)^{1/n}$
non – uniform Ω^h	: $h \Rightarrow f(h_e \text{ parallel to } \hat{u}_j)$

for Re >> 1, TS exercise on steady – state INS generates $u_i u_k$ identically

uniform Ω^h : $\beta \Rightarrow h^2 \operatorname{Re}/12$, $h \cong \operatorname{C}(\operatorname{det}_e)^{1/n}$ not arbitrary! non – uniform Ω^h : $h \Rightarrow h_e$ is not analyzed

PPNS.10 TWS^h + θ TS, Unsteady Thermal Cavity Validation

8:1 thermal cavity flowfield transitions to unsteady for Ra > 3.1E5

PPNS.11 TWS^h + θ TS for PPNS, Closure for Turbulent Flow

Unsteady, non-D Reynolds-averaged INS with TKE closure

DM:	$\nabla \cdot \mathbf{u} = 0$
D P :	$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} + \mathrm{Eu}\nabla p - \nabla \cdot \left(\mathrm{Re}^{-1} + v^t\right) \nabla \mathbf{u} + \frac{\mathrm{Gr}}{\mathrm{Re}^2} \Theta \hat{\mathbf{g}} = 0$
DE:	$\frac{\partial \Theta}{\partial t} + \mathbf{u} \cdot \nabla \Theta - \nabla \cdot \left(\operatorname{Pe}^{-1} + \operatorname{Pr}^{-1} v^{t} \right) \nabla \Theta - s_{\Theta} = 0$
DE(k):	$\frac{\partial k}{\partial t} + \mathbf{u} \cdot \nabla k - \nabla \cdot \left(\mathbf{P} \mathbf{e}^{-1} + v^t / \mathbf{P} \mathbf{r}^t \right) \nabla k + \mathbf{T} \nabla \mathbf{u} - \varepsilon = 0$
$DE(\varepsilon)$:	$\frac{\partial \varepsilon}{\partial t} + \mathbf{u} \cdot \nabla \varepsilon - \nabla \cdot \left(\mathbf{C}_{\varepsilon} v^{t} / \mathbf{P} \mathbf{r}^{t} \right) \nabla \varepsilon + \mathbf{C}_{\varepsilon}^{1} \mathbf{T} \frac{\varepsilon}{k} \nabla \mathbf{u} - \mathbf{C}_{\varepsilon}^{2} \varepsilon^{2} / k = 0$

PPNS iterative closure strategy

DM^h:

$$L(\phi) = -\nabla^{2}\phi + \nabla \cdot \mathbf{u}^{h} = 0$$

$$\ell(\phi) = -\nabla\phi \cdot \hat{\mathbf{n}} - (\mathbf{u}^{n+1} - \mathbf{u}^{h}) \cdot \hat{\mathbf{n}} = 0$$

$$\nabla \cdot \mathbf{DP}:$$

$$L(p) = -\mathrm{Eu}\nabla^{2}p - s(u_{i}, \Theta) = 0$$

$$\ell(p) = \nabla p \cdot \hat{\mathbf{n}} + f(\mathrm{Re}, \nabla^{2}\mathbf{u} \cdot \hat{\mathbf{n}}) = 0$$

PPNS.12 BCs for *n*-D TKE Closure, Law-of-the-Wall

In *n*-D, low Re^t region resolution is computationally intense

recall Cole's law:

$$U^{+} \equiv u / u_{\tau} = \kappa^{-1} \log(y^{+}E) + B$$
$$y^{+} \equiv u_{\tau} y / \upsilon$$

for near-wall production = dissipation

$$DE^{m}(k) \Longrightarrow \qquad v^{t} = \kappa y u_{\tau}$$

$$k = u_{\tau}^{2} / C_{\mu}$$

$$\varepsilon = (\kappa y)^{-1} |u_{\tau}|^{3}$$

$$\tau_{w} = \sqrt{C_{\mu}} k = u_{\tau} (C_{\mu})^{-1/2}$$

law-of-the-wall BC strategy

 $u_i(n_{wall}) = 0$ k, $\varepsilon(n_{wall+1}) = k, \varepsilon$ from $DE^m(k)$ requires solution for u_τ at each wall +1 node \Rightarrow consistancy check mandatory !

Iteration stabilization accrues to segregated state variable delay

for $\{Q1\}_e^T = \{UI, T, \phi\}_e : \{FQ1\}_e^p = \{FQ1(Q2N)\}\$ for $\{Q2\}_e^T = \{K, EPS, T_{ij}\}_e : \{FQ2\}_e^p = \{FQ2(Q1N)\}\$ at convergence for $\{Q1\}, \{Q2\},$ solve for $\{PRES\}_{n+1}$ restart iteration loop

Template follows in aPSE area

PPNS.14 TWS^{*h*} + θ TS PPNS Algorithm, Turbulent Duct Flow

Turbulent duct flow, Re/L = 4×10^6 , TWS $\beta = 0.2$; ϕ , $\Sigma \phi$, pressure, k, ϵ

PPNS.15 TWS^{*h*} + θ TS **PPNS** Algorithm, Turbulent Duct Flow

Turbulent duct flow, $\text{Re/L} = 4 \times 10^6$, BC resolution, iterative convergence

PPNS.16 : RaNS+TKE CFD Prediction of Turbulent Flows

Accurate prediction requires close attention to detail

RaNS

$$D(\bullet) : \mathsf{L}(q) = \frac{\partial q}{\partial t} + \frac{\partial}{\partial x} (f_j - f_j^{\upsilon}) - s = 0, \text{ on } \Omega \ge t \subset \mathfrak{R}^n \ge \mathfrak{R}^n$$

$$INS : q = \{\overline{u}, \overline{v}, \overline{w}, k, \varepsilon, \varphi, \overline{P}\}, \text{ and } \nabla \bullet \mathbf{u} = 0$$

$$f_j = f_j(\overline{u_j}, q, p \delta_{ij})$$

$$f_j^{\upsilon} = f_j^{\upsilon} (q, \operatorname{Re}, \operatorname{Pr}, \operatorname{Re}^t, \tau_{ij}, \operatorname{C}_q^{\alpha}, \beta)$$

$$s = s(q, \operatorname{Gr}, \operatorname{Re}, \tau_{ij}, \varepsilon, S_{ij})$$

Basically a time balance with kinetic and dissipative flux vectors

TWS^{*h*}+ θ TS: {FQ}_e=[M200(α,γ)]_e{ ΔQ }_e+ Δt [M20J]_e{FJ-FVJ}_e-{b}_e {FVJ}_e={ $f(\text{Re}^{-1})S_{ij}, (\text{Re}^{t}/\text{Re})S_{ij}, (\beta \text{Re})u_{k}, u_{j}, S_{ij})$ } \Rightarrow one must generate these data for confidence

PPNS.17 RaNS Dissipative Flux Vector GWS Algorithms

$$GWS^{h}(f_{j}^{\nu}) = \int_{\Omega} \Psi_{\beta}(\mathbf{x}) \mathsf{L}(f_{j}^{\nu}) d\tau = S_{e}\{WS(\cdot)\}_{e} = \{0\}$$
$$\{WS(\cdot)\}_{e} = \int_{\Omega_{e}} \{N\}(f_{j}^{\nu}(\operatorname{Re},\operatorname{Re}^{t},\beta,\ldots,S_{ij}))_{e} d\tau$$

RaNS dissipative flux vector template pseudo-code

 $\{FJI(v)\}_{e} = (Re^{-1})() \{ \}(EJK;0)[M20K] \{UI\} \\ +(Re^{-1})() \{ \}(EIK;0)[M20K] \{UJ\} \\ \{FJI(Re^{t})\}_{e} = (Re^{-1})() \{RET\}(EJK;0)[M300K] \{UI\} \\ +(Re^{-1})() \{RET\}(EIK;0)[M300K] \{UJ\} \\ \{FJI(\beta)\}_{e} = (Re/12)(h^{2}) \{UJ,UK\}(EKL;0)[M300L] \{UI\} \\ +(Re/12)(h^{2}) \{UI,UK\}(EKL;0)[M300L] \{UJ\}$

boundary conditions : apply zero at nodes where flux vector vanishes(only) all other boundary nodes float

PPNS.18 RaNS Dissipative Flux Vector Distributions

PPNS.18A RaNS Dissipative Flux Vector Distributions

PPNS.18B RaNS Dissipative Flux Vector Distributions

PPNS.18C RaNS Dissipative Flux Vector Distributions

PPNS.18D RaNS Dissipative Flux Vector Distributions

PPNS.18E RaNS Dissipative Flux Vector Distributions

PPNS.19 Summary: Pressure Projection RaNS Algorithms

$TWS^{h} + \theta TS$ PPNS iteration algorithm applicable to RaNS

key formulation issues: $D\mathbf{P}^{h} = f(DM^{h} \operatorname{via} P_{n+1}^{*})$ $DM^{h} = f(\nabla^{h} \cdot \mathbf{u}^{h}, \phi^{h} \text{ at iteration } p+1)$ $P_{n+1}^{*} = \Sigma \phi + (\theta \Delta t)^{-1} \sum_{\alpha=0}^{p} \delta \phi_{n+1}^{\alpha+1}$ $P_{n+1} = GWS^{h}(\mathsf{L}(P), |\phi^{P+1}|_{\varepsilon} < \varepsilon)_{n+1}$ solution initiation: ICs for q^{h} are never (!) available

Algorithm performance fully resolvable

flux vector distribution solutions highly informative turbulence model phenomena detailed numerical dissipation clearly visualized meshing adequacy predictable via energy norms ⇒ a robust CFD basis