Course Calendar Problems Home Courseware
Courseware Video  
     
 
Text:    Optimal MODIFIED CONTINUOUS Galerkin CFD,  (2014)
References:       1. Wilcox, Turbulence Modeling for CFD,  (2006)
      2. Pope, Turbulent Flows,  (2000)
      3. John, Large Eddy Simulation of Turbulent Incompressible Flows,  2004)
      4. Cebeci & Smith, Analysis of Turbulent Boundary Layers,  (1974)
      5. Sekachev et al, J. Computational Physics,  (2014)
      6. Tannehill,  Anderson & Pletcher,Computational Fluid Mechanics and Heat Transfer , (1997)

 
   TFD. TURBULENT FLUID DYNAMICS:
     introduction, the physics of turbulence
   CFD. COMPUTATIONAL FLUID DYNAMICS:
     advanced level topical CFD tutorial
   CST. COMPUTATIONAL SPECTRAL THEORY:
     CFD algorithm error mechanisms, spectral tutorial
   PNS. STEADY PARABOLIC NAVIER-STOKES:
     incompressible unidirectional flow, RaNS turbulence closure modeling
   PPNS. PRESSURE PROJECTION UNSTEADY NAVIER-STOKES:
     time-accurate unsteady incompressible weak form CFD algorithm
   TFC. TURBULENCE FARFIELD CHARACTERISTICS:
     Similarity solutions, MLT closure, issues with farfield unidirectional  flows
   RaNS. TIME AVERAGED NS CLOSURE:
     single- and two-equation closure models, nearfield/farfield characterization
   CNS. COMPRESSIBLE NAVIER_STOKES:
     Favre-averaged NS, PDE closure issues, law of the wall
   ASM. ADVANCED TOPICS IN REYNOLDS STRESS CLOSURE:
     linear, non-linear, algebraic and PDE transport Ret closure models
   BRaNS. BEYOND REYNOLDS AVERAGED NAVIER STOKES:
     DNS, space filtering, LES, BCs, DES
   MMFD. MATHEMATICS & MECHANICS OF CHAOTIC FLUID DYNAMICS:
     statistical description of turbulence, random processes, fields
   LES. LARGE EDDY SIMULATION:
     space filtered NS, convolution, tensor quadruple, spectral descriptions,
     closure models
   CLES. LES THEORY COMPLETIONS:
     weak forms, error mechanisms, theory approximations, algorithms
   CFDLES. RATIONAL LES (RLES) THEORY REPRISE
     RLES theory unresolved issues, auxiliary problem BCs,
     subfilter scale tensor/vector dissipation
   AUX1. LES ANALYTICAL CLOSURE (arLES) THEORY
     RLES + mPDE theory union, tensor/vector quadruple analytical closure,
     perturbation theory ordered state variable, mGWSh + TS algorithm,
     laminar Re validation, mesh adequacy diagnostics
   AUX2. arLES THEORY WELL-POSED ON BOUNDED DOMAINS
     BCE integrals, distribution sense extensions, Dirichlet BCs resolution,
     AD-GWSh-DBC algorithm, theory measure constraint,
     laminar-turbulent transition validation, diagnostics
   SUM. SUMMARY:
     at the time (2006) course summary
TOP